Responsive image
博碩士論文 etd-0717112-154425 詳細資訊
Title page for etd-0717112-154425
論文名稱
Title
次世代新穎非揮發性電阻式記憶元件製作與物理機制研究
Research on Fabrication and Physical Mechanisms of Next-Generation Novel Nonvolatile Resistive Memory Devices
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
130
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-18
繳交日期
Date of Submission
2012-07-17
關鍵字
Keywords
非揮發性記憶體、電阻式記憶體
Resistive Random Access Memory (RRAM), Nonvolatile memory
統計
Statistics
本論文已被瀏覽 5699 次,被下載 260
The thesis/dissertation has been browsed 5699 times, has been downloaded 260 times.
中文摘要
電阻式記憶體為目前最具發展潛力的非揮發性記憶元件,其擁有極低的操作電壓、極短的寫入抹除時間及高度的元件可微縮性。因此深受學術界及各國際大廠的重視,並紛紛投入研究及開發,期望能儘速將電阻式記憶體元件商業化。本研究將以物理機制的釐清、發展具潛力的材料與結構、及穩定以穩定電阻式記憶體之操作特性為主要目標,特別是物理機制的釐清,將是電阻式記憶體能否商品化之關鍵因素。
對於filament導通為基礎的電阻式記憶體而言,目前研究指出不穩定導通路徑的filament造成電阻切換變異,而轉換層的氧元素的散逸可能會造成耐操度、阻值差異。所以在我們的研究中提出新材料(矽引入)及新結構(氧侷限層)的方式來達到抑制上述兩者的缺點,進而增進電阻式記憶體元件之阻態切換的穩定性、耐操度,元件間的均勻性。此外於切換能量為定值的實驗中有於篩選最佳的材料及結構,並經確的控制電阻式記憶體的操作條件。
物理機制的釐清方面,使用工研院提供穩定的HfO2電阻式記憶體元件,進行更深入的物理機制研究。電阻切換過程被證明是filament的形成及斷裂造成的。此外電阻式記憶體的切換速度極快,我們認為這是由於轉態反應是由數顆原子的切換主導。然而在如此微小的微度下,難以藉由材料即時動態解析此只涉及數顆原子的反應。我們由不同的電特性分析觀察電阻式記憶體數十顆原子的動態切換行為,更進一步分析求得此傳導途經的電阻率,證明此傳導途經是由金屬質的細絲所組成。並且同時證明電阻式記憶體在極低溫環境下(4K)的切換動作是由於金屬質細絲中逐顆(Atom by Atom)反應所形成的量化現象。
Abstract
Resistive Random Access Memory (RRAM) is considered as the most promising candidate for the next-generation nonvolatile memories due to their superior properties such as low operation voltage, fast operation speed, non-destructive read, simple metal-insulator-metal (MIM) sandwich structure, good scale-down ability. The main targets of this research are to clarify the corresponding physical mechanism, develop the potential material and structure of RRAM and stabilize the resistive switching characteristics, in which clarifying the physical mechanism will be the key factor for RRAM into production in the future.
Recent research has suggested that variation of the low and high resistance states in RRAM could be caused due to the by instability in the formation and /disruption of the filament. In addition, the endurance and stability of RRAM may be related to the dissipation of oxygen ions in the switching layer. In this study, new material (Si Introduced) and structure (oxygen confined layer) are employed to improve RRAM performance and to clarify the physical mechanism. Furthermore, constant switching energy results can be used to select the optimal materials and structures also can be used to correctly allocate voltage and time to control RRAM.
The detail physical mechanism is studied by the stable RRAM device (Ti/HfO2/TiN) which is offered from Industrial Technology Research Institute (ITRI). The switching process is proved as the formation/disruption of the filament. Furthermore, the dynamic switching behaviors during reset procedure in RRAM were analyzed by the sequential experimental design to illustrate the procedure of atomic quantized reaction at the ultra-cryogenic temperature.
目次 Table of Contents
Contents
Abstract (Chinese).………………………...…………I
Abstract (English) …………………………....………II
Acknowledgement………………………………...…III
Contents……………………..………………………..IV
Figure Captions……...................................................VIII
Table Captions……....................................................VIII
Chapter1 Background
1-1. The Evolution of Memory 1
1-2. The Advanced Memory 2
1-2-1. MRAM (Magnetic RAM) 2
1-2-2. FeRAM (Ferroelectric RAM) 3
1-2-3. PCRAM (Phase Change RAM) 4
1-2-4. RRAM (Resistance RAM) 5
1-3. Motivation 5
Chapter2 Basic Introduction of RRAM
2-1. Introduction of RRAM 11
2-2. The Materials of RRAM 12
2-2-1. Perovskite Oxides 12
2-2-2. Organic Materials 13
2-2-3. Transition Metal Oxides 13
2-3. The Switching Mechanism of RRAM 15
2-3-1. Charge Trap in Small Domain 15
2-3-2. Filamentary Model 16
2-3-2-1. Joule Heating Effect 16
2-3-2-2. Redox Reaction with Cation Migration 17
2-3-2-3. Redox Reaction with Anion Migration 18
2-3-3. Modified Schottky Barrier Model 19
2-4. Conducting Mechanisms in Oxides 20
2-4-1. Ohmic Conduction 21
2-4-2. Schottky Emission 21
2-4-3. Poole-Frenkel Emission 22
V
2-4-4. Tunneling Conduction 22
2-4-5. Space Charge Limited Current 23
2-4-6. Hopping Conduction 23
Chapter3 Silicon Introduced Effect on Resistive Switching Properties of
WOX Thin Films
3-1. Introduction 35
3-2. Experiment 36
3-3. Discussion and Results 36
3-4. Conclusion 39
Chapter4 Asymmetric Carrier Conduction Mechanism by Tip Electric
Field in WSiOX Resistance Switching Device
4-1. Introduction 47
4-2. Experiment 48
4-3. Discussion and Results 48
4-4. Conclusion 51
Chapter5 Ultra-high Endurance Technology with Oxygen-confined
-layer Inserted in WSiOX Resistance Switching Device
5-1. Introduction 58
5-2. Experiment 59
5-3. Discussion and Results 59
5-4. Conclusion 61
Chapter6 Improving Resistance Switching Characteristics with SiGeOX
/SiGeON Double Layer for Nonvolatile Memory Applications
6-1. Introduction 69
6-2. Experiment 70
6-3. Discussion and Results 70
6-4. Conclusion 73
Chapter7 Redox Reaction Switching Mechanism in RRAM Device with
Pt/CoSiOX/TiN Structure
7-1. Introduction 81
7-2. Experiment 81
VI
7-3. Discussion and Results 82
7-4. Conclusion 85
Chapter8 Resistance Switching Mechanism of HfO2 RRAM
8-1. Introduction 91
8-2. Experiment 92
8-3. Discussion and Results 92
8-4. Conclusion 97
Chapter9 Atomic-Level Quantized Reaction of RRAM
9-1. Introduction 105
9-2. Experiment 106
9-3. Discussion and Results 107
9-4. Conclusion 109
Chapter10 Conclusion 114
參考文獻 References
[01.01] S. Tiwari, F. Rana et al., “Volatile and non-volatile memories in silicon with nano-crystal storage,” IEDM Tech. Dig., 521 (1995)
[01.02] T. C. Chang, S. T. Yan et al., “A novel approach for fabricating germanium nanocrystals for nonvolatile memory application”, Electrochem. Solid-State Lett. 7, 17 (2004)
[01.03] Y. M. Yang, T. C. Chang et al., “Memory characteristics of Co nanocrystal memory device with HfO2 as blocking oxide”, Appl. Phys. Lett. 90, 132102 (2007)
[01.04] S. C. Chen, T. C. Chang et al., “A novel nanowire channel poly-Si TFT functioning as transistor and nonvolatile SONOS memory”, IEEE Electron Device Lett. 28 (9), 809-811 (2007)
[01.05] Gary A. Prinz “Magnetoelectronics.” Science 282, 1660-1663 (1998)
[01.06] D. N. Nguyen and L. Z. Scheick, “TID Testing of Ferroelectric Nonvolatile RAM” Radiation Effects Data Workshop, 2001 IEEE 57-61 (2001)
[01.07] R. Zhao, L.P. Shi et al., “Study of Phase Change Random Access Memory (PCRAM) at the Nano-Scale” Non-Volatile Memory Technology Symposium, 2007. NVMTS 07, 36-39 (2007)
[01.08] T. W. Hickmott, ”Low-Frequency Negative Resistance in Thin Anodic Oxide Films”, J. Appl. Phys. 33, 2669 (1962)
[01.09] A. Beck, J. G. Bednorz et al., “Reproducible switching effect in thin oxide films for memory applications”, Appl. Phys. Lett. 77,139 (2000)
[01.10] G. Muller, T. Happ et al., “Status and outlook of emerging nonvolatole memory technologies“ IEEE IEDM 567 - 570 (2004)

[02.01] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokurad, “Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface”, Appl. Phys. Lett. 85, 4073 (2004)
[02.02] Y. Watanabe, J. G. Bednorz et al., “Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals”, Appl. Phys. Lett. 78, 3738 (2001)
[02.03] A. Beck, J. G. Bednorz et al., ”Reproducible switching effect in thin oxide films for memory applications”, Appl. Phys. Lett. 77, 139 (2000)
[02.04] L. P. Ma, J. Liu et al., ”Organic electrical bistable devices and rewritable memory cells”, Appl. Phys. Lett. 80, 2997 (2002)
[02.05] S. Seo, M. J. Lee et al., ”Reproducible resistance switching in polycrystalline NiO films”, Appl. Phys. Lett. 85, 5655 (2004)
[02.06] W. Y. Chang, Y. C. Lai et al., ”Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications”, Appl. Phys. Lett. 92, 022110 (2008)
[02.07] W. Guan, S. Long, R. Jia, and M. Liu, ”Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide”, Appl. Phys. Lett. 91, 062111 (2007)
[02.08] C. P. Hsiung, J. Y. Gan et al., ” Resistance Switching Characteristics of TiO2 Thin Films Prepared with Reactive Sputtering”, Electrochemical and Solid-State Letters 12 (7), G31-G33 (2009)
[02.09] M.Y. Chan, T. Zhang, V. Ho and P. S. Lee ”Resistive switching effects of HfO2 high-k dielectric”, Microelectronic Engineering 85, 2420 (2008)
[02.10] M. J. Rozenberg, I. H. Inoue et al., “Nonvolatile memory with Multilevel Switching: A Basic Model”, Phys. Rev. Lett. 92, 178302 (2004)
[02.11] J. Y. Son and Y. H. Shina,” Direct observation of conducting filaments on resistive switching of NiO thin films”, Appl. Phys. Lett 92, 222106 (2008)

[02.12] S. H. Chang, S. C. Chae et al., ” Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors”, Appl. Phys. Lett. 92, 183507 (2008)
[02.13] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, ”Fully Room-Temperature- Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application”, Nano Lett. 9, 1636 (2009)
[02.14] K. C. Liu, W. H. Tzeng et al., ”The resistive switching characteristics of a Ti/Gd2O3/Pt RRAM device”, Microelectronics Reliability 50, 670 (2010)
[02.15] A. Sawa, “Resistive switching in transition metal oxides”, Mater. Today 11, 28 (2008)
[02.16] D. Ielmini and Y. Zhang,” Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices”, J. Appl. Phys. 102, 054517 (2007)
[02.17] S. M. Sze, “Physics of Semiconductor Devices 2nd Edition,” (1983)
[03.01] F. M. Yang, T. C. Chang et al., “Memory characteristics of Co nanocrystal memory device with HfO2 as blocking oxide”, Appl. Phys. Lett. 90, 132102 (2007).
[03.02] S. C. Chen, T. C. Chang et al., “A novel nanowire channel poly-Si TFT functioning as transistor and nonvolatile SONOS memory”, IEEE Electron Device Lett. 28, 809 (2007).
[03.03] T. C. Chang, F. Y. Jian, S. C. Chen and Y. T. Tsai, “Developments in nanocrystal memory”, Mater. Today 14 (12), 608 (2011)
[03.04] R. Waser and M. Aono, “Nanoionics-based resistive switching memories”, Nat. Mater. 6, 833-840 (2007)
[03.05] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-Based Resistive Switching Memories–Nanoionic Mechanisms, Prospects, and Challenges”, Adv. Mater. 21, 2632–2663 (2009)
[03.06] M. C. Chen, T. C. Chang et al., “Bipolar resistive switching characteristics of transparent indium gallium zinc oxide resistive random access memory”, Electrochem. Solid State Lett. 13(6), H191-H193 (2010)
[03.07] W. C. Chien, Y. C. Chen et al., “Unipolar Switching Behaviors of RTO WOX RRAM”, IEEE Electron Device Lett. 31, 126-128 (2010)
[03.08] R. Sohal, C. Walczyk et al., “Thermal oxidation of chemical vapour deposited tungsten layers on silicon substrates for embedded non-volatile memory application”, Thin Solid Films 517, 4534–4539 (2009)
[03.09] D. S. Shang, L. Shi et al., “Improvement of reproducible resistance switching in polycrystalline tungsten oxide films by in situ oxygen annealing”, Appl. Phys. Lett. 96, 072103 (2010)
[03.10] Y. E. Syu, T. C. Chang et al., “Improving resistance switching characteristics with SiGeOX/SiGeON double layer for nonvolatile memory applications”, Electrochem. Solid State Lett. 14(10), H419-H421 (2011)
[03.11] P. C. Yang, T. C. Chang et al., “Influence of bias-induced copper diffusion on the resistive switching characteristics of SiON thin film”, Electrochem. Solid State Lett. 14(2), H93-H95 (2011)
[03.12] D. Ielmini, C. Cagli, and F. Nardi, “Resistance transition in metal oxides induced by electronic threshold switching”, Appl. Phys. Lett. 94, 063511 (2009)
[03.13] M. Fujimoto, H. Koyama et al., “TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching”, Appl. Phys. Lett. 89, 223509 (2006)
[03.14] Y. E. Syu, T. C. Chang et al., “Redox Reaction Switching Mechanism in RRAM device with Pt/CoSiOX/TiN structure”, IEEE Electron Device Lett. 32, 545-547 (2011)
[03.15] A. Antonaia, M.C. Santoro, G. Fameli and T. Polichetti, “Transport mechanism and IR structural characterisation of evaporated amorphous WO3 films”, Thin Solid Films 426, 281–287 (2003)
[03.16] C. Martin, P. Malet, G. Solana and V. Rives, “Structure analysis of supported tungstates”, J. Phys. Chem. B 102, 2759-2768 (1998)
[03.17] J. Luthin, Ch. Linsmeier,” Influence of oxygen on the carbide formation on tungsten”, “Influence of oxygen on the carbide formation on tungsten”, Journal of Nuclear Materials, 290-293, 121-125 (2001)
[03.18] M. Valigi, D. Gazzoli, I. Pettiti, G. Mattei, S. Colonna, S. De Rossi and G. Ferraris, “WOX/ZrO2 catalysts (1) Preparation, bulk and surface characterization”, Appl. Catal. A Gen. 231, 159-172 (2002)
[03.19] R. Beyers, “Thermodynamic considerations in refractory metal-silicon-oxygen systems”, J. Appl. Phys. 56, 147 (1984)
[04.01] F. M. Yang, T. C. Chang et al., “Memory characteristics of Co nanocrystal memory device with HfO2 as blocking oxide”, Appl. Phys. Lett. 90, 132102 (2007).
[04.02] S. C. Chen, T. C. Chang et al., “A novel nanowire channel poly-Si TFT functioning as transistor and nonvolatile SONOS memory”, IEEE Electron Device Lett. 28, 809 (2007).
[04.03] T. C. Chang, F. Y. Jian, S. C. Chen and Y. T. Tsai, “Developments in nanocrystal memory”, Mater. Today 14 (12), 608 (2011)
[04.04] R. Waser and M. Aono, “Nanoionics-based resistive switching memories”, Nat. Mater. 6, 833-840 (2007)
[04.05] L. W. Feng, C. Y. Chang et al., “A study of resistive switching effects on a thin FeOX transition layer produced at the oxide/iron interface of TiN/SiO2/Fe-contented electrode structures,” Appl. Phys. Lett. 96, 052111 (2010).
[04.06] M. C. Chen, T. C. Chang et al., “Influence of electrode material on the resistive memory switching property of indium gallium zinc oxide thin films”, Appl. Phys. Lett. 96, 262110 (2010)
[04.07] C. Yoshida, K. Kinoshita, T. Yamasaki, and Y. Sugiyama, “Direct observation of oxygen movement during resistance switching in NiO/Pt film”, Appl. Phys. Lett. 93, 042106 (2008)
[04.08] D. S. Shang, L. Shi et al., “Improvement of reproducible resistance switching in polycrystalline tungsten oxide films by in situ oxygen annealing”, Appl. Phys. Lett. 96, 072103 (2010)
[04.09] Y. E. Syu, T. C. Chang et al., “Redox Reaction Switching Mechanism in RRAM device with Pt/CoSiOX/TiN structure”, IEEE Electron Device Lett. 32, 545-547 (2011)
[04.10] A. Sawa, “Resistive switching in transition metal oxides”, Mater. Today 11, 28 (2008)
[04.11] P. C. Yang, T. C. Chang et al., “Influence of bias-induced copper diffusion on the resistive switching characteristics of SiON thin film”, Electrochem. Solid State Lett. 14(2), H93-H95 (2011)
[04.12] S. M. Sze and Kwok K. Ng, Physics of semiconductor devices, Hoboken, New Jersey, Jhon Wiley & Sons, 2007, pp227-229.

[05.01] T. C. Chang, F. Y. Jian, S. C. Chen and Y. T. Tsai, “Developments in nanocrystal memory”, Mater. Today 14 (12), 608 (2011)
[05.02] F. M. Yang, T. C. Chang et al., “Memory characteristics of Co nanocrystal memory device with HfO2 as blocking oxide”, Appl. Phys. Lett. 90, 132102 (2007)
[05.03] S. C. Chen, T. C. Chang et al., “A novel nanowire channel poly-Si TFT functioning as transistor and nonvolatile SONOS memory”, IEEE Electron Device Lett. 28, 809 (2007)
[05.04] A. Sawa, “Resistive switching in transition metal oxides”, Mater. Today 11, 28 (2008)
[05.05] C. Liang, K. Terabe, T. Hasegawa, and M. Aono, “Resistance switching of an individual Ag2S/Ag nanowire heterostructure”, Nanotechnology 18, 485202 (2007)
[05.06] C. T. Tsai, T. C. Chang et al. ”Low temperature improvement on silicon oxide grown by electron-gun evaporation for resistance memory applications”, Appl. Phys. Lett. 93, 052903 (2008).
[05.07] Y. E. Syu, T. C. Chang et al., “Redox Reaction Switching Mechanism in RRAM device with Pt/CoSiOX/TiN structure”, IEEE Electron Device Lett. 32, 545-547 (2011)
[05.08] C. Yoshida, K. Kinoshita, T. Yamasaki, and Y. Sugiyama, “Direct observation of oxygen movement during resistance switching in NiO/Pt film”, Appl. Phys. Lett. 93, 042106 (2008)
[05.09] P. C. Yang, T. C. Chang et al., “Influence of bias-induced copper diffusion on the resistive switching characteristics of SiON thin film”, Electrochem. Solid State Lett. 14(2), H93-H95 (2011)
[05.10] D. C. Kim, M. J. Lee et al, “Reversible resistive switching behaviors in NiO nanowires”, Appl. Phys. Lett. 88, 232106(2006).
[05.11] M. C. Chen, T. C. Chang et al., “Influence of electrode material on the resistive memory switching property of indium gallium zinc oxide thin films”, Appl. Phys. Lett. 96, 262110 (2010)
[05.12] K. C. Chang, T. M. Tsai et al., “Reducing operation current of Ni-doped silicon oxide resistance random access memory by supercritical CO2 fluid treatment”, Appl. Phys. Lett. 99, 263501 (2011).
[05.13] Y. E. Syu, T. C. Chang et al., “Silicon introduced Effect on Resistive Switching Characteristics of WOX Thin Films”, Appl. Phys. Lett. 100, 022904 (2012).
[05.14] N. Xu, B. Gao, L. F. Liu, B. Sun, X. Y. Liu, R. Q. Ham, J. F. Kang, and B. Yu, “”, In: VLSI symposium technical digest, 100 (2008).
[05.15] K. Peter C. Vollhardt and Neil E. Schore, Organic Chemistry, W. H. Freeman and Company, 3rd Ed., (1998).
[05.16] Peter Atkins, Physical Chemistry, Oxford University Press India, 8th Ed. (2005).
[06.01] A. Sawa, “Resistive switching in transition metal oxides”, Mater. Today 11, 28 (2008)
[06.02] R. Waser and M. Aono, “Nanoionics-based resistive switching memories”, Nature Mater. 6, 833 (2007)
[06.03] C. T. Tsai, T. C. Chang et al., “Low temperature improvement on silicon oxide grown by electron-gun evaporation for resistance memory applications”, Appl. Phys. Lett. 93, 052903 (2008)
[06.04] Y. E. Syu, T. C. Chang et al., “Redox Reaction Switching Mechanism in RRAM device with Pt/CoSiOX/TiN structure”, IEEE Electron Device Lett. 32(4), 545-547 (2011)
[06.05] P. C. Yang, T. C. Chang et al., “Influence of bias-induced copper diffusion on the resistive switching characteristics of SiON thin film”, Electrochem. Solid State Lett. 14(2), H93-H95 (2011)
[06.06] J. W. Seo, J. W. Park et al., “Transparent resistive random access memory and its characteristics for nonvolatile resistive switching”, Appl. Phys. Lett. 93, 223505 (2008)
[06.07] C. Yoshida, K. Kinoshita, T. Yamasaki, and Y. Sugiyama, ” Direct observation of oxygen movement during resistance switching in NiO/Pt film”, Appl. Phys. Lett. 93, 042106 (2008).
[06.08] S. C. Chae, J. S. Lee et al., ”Random Circuit Breaker Network Model for Unipolar Resistance Switching”, Adv. Mater. 20, 1154 (2008)
[06.09] L. F. Liu, J. F. Kang et al., “Gd Doping Improved Resistive Switching Characteristics of TiO2-Based Resistive Memory Devices”, Jpn. J. Appl. Phys. 47, 2701(2008)
[06.10] W. Y. Chang, K. J. Cheng et al., “Improvement of resistive switching characteristics in TiO2 thin films with embedded Pt nanocrystals”, Appl. Phys. Lett. 95, 042104 (2009)
[06.11] D. C. Kim, M. J. Lee et al., “Improvement of resistive memory switching in NiO using IrO2”, Appl. Phys. Lett. 88, 232106 (2006)
[06.12] H. Lv, H. Wan, and T. Tang, ” Improvement of Resistive Switching Uniformity by Introducing a Thin GST Interface Layer”, IEEE Electron Device Lett. 31, 978-980 (2010)
[06.13] Z. Fang, H. Y. Yu et al., ” Multilayer-Based Forming-Free RRAM Devices With Excellent Uniformity”, IEEE Electron Device Lett. 32, 566-568 (2011)
[06.14] Q. Liu, S. Long, et al., ” Controllable Growth of Nanoscale Conductive Filaments in Solid-Electrolyte- Based ReRAM by Using a Metal Nanocrystal Covered Bottom Electrode”, ACS Nano 4, 6162-6168 (2010)
[06.15] J. Lee, M. Bourim et al., “Effect of ZrOx/HfOx bilayer structure on switching uniformity and reliability in nonvolatile memory applications”, Appl. Phys. Lett. 97, 172105 (2010)
[06.16] N. Xu, B. Gao et al., “A Unified Physical Model of Switching Behavior in Oxide-Based RRAM”, In: VLSI symposium technical digest, 100 (2008).
[06.17] M. Zacharias, F. Stolze, T. Drusedau, and W. Bock, “Formation of Ge nanocrystals in amorphous GeO and SiGeO alluy films”, Phys. Status Solidi B 189, 409 (1996).

[07.01] S. Tiwari, F. Rana et al., ”Volatile and non-volatile memories in silicon with nano-crystal storage,” in IEDM Tech. Dig., pp. 521–524 (1995)
[07.02] T. C. Chang, S. T. Yan et al., ”A Novel Approach of Fabricating Germanium Nanocrystals for Nonvolatile Memory Application,” Electrochemical and Solid State Letters 7(1), pp.G17-G19 (2004)
[07.03] M. J. Lee, S. I. Kim et al., ”Low-Temperature-Grown Transition Metal Oxide Based Storage Materials and Oxide Transistors for High-Density Non-volatile Memory,” Adv. Funct. Mater. 19, pp.1587–1593 (2009)
[07.04] R. Soni, P. Meuffels et al., ”Probing Cu doped Ge0.3Se0.7 based resistance switching memory devices with random telegraph noise,” J. Appl. Phys. 107,024517 (2010)
[07.05] D. Ielmini, C. Cagli and F. Nardi, ”Resistance transition in metal oxides induced by electronic threshold switching,” Appl. Phys. Lett. 94, 063511 (2009)
[07.06] S. B. Lee, S. C. Chae et al., “Scaling behaviors of reset voltages and currents in unipolar resistance switching,“ Appl. Phys. Lett. 93, 212105 (2008)
[07.07] D. Ielmini, C. Cagli, and F. Nardi, “Resistance transition in metal oxides induced by electronic threshold switching,“ Appl. Phys. Lett. 94, 063511 ( 2009)
[07.08] A. Sawa,” Resistive switching in transition metal oxides,” Mater. Today 11, pp. 28–36 (2008)
[07.09] C. Yoshida, K. Kinoshita, T. Yamasaki, and Y. Sugiyama,” Direct observation of oxygen movement during resistance switching in NiO/Pt film,” Appl. Phys. Lett. 93,042106 (2008)
[07.10] U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita,” Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices,” IEEE Transactions on Electron Devices 56, pp. 193–200 (2009)

[08.01] T. C. Chang, F. Y. Jian, S. C. Chen and Y. T. Tsai, “Developments in nanocrystal memory”, Mater. Today 14 (12), 608 (2011)
[08.02] F. M. Yang, T. C. Chang et al., “Memory characteristics of Co nanocrystal memory device with HfO2 as blocking oxide”, Appl. Phys. Lett. 90, 132102 (2007)
[08.03] S. C. Chen, T. C. Chang et al., “A novel nanowire channel poly-Si TFT functioning as transistor and nonvolatile SONOS memory”, IEEE Electron Device Lett. 28, 809 (2007)
[08.04] C. T. Tsai, T. C. Chang et al., “Low temperature improvement on silicon oxide grown by electron-gun evaporation for resistance memory applications”, Appl. Phys. Lett. 93, 052903 (2008)
[08.05] J. W. Seo, J. W. Park et al., “Transparent resistive random access memory and its characteristics for nonvolatile resistive switching”, Appl. Phys. Lett. 93, 223505 (2008)
[08.06] C. Yoshida, K. Kinoshita, T. Yamasaki and Y. Sugiyama, “Direct observation of oxygen movement during resistance switching in NiO/Pt film”, Appl. Phys. Lett. 93, 042106 (2008)
[08.07] G.-S. Park, X.-S. Li et al., “Observation of electric-field induced Ni filament channels in polycrystalline NiOx film”, Appl. Phys. Lett. 91, 222103 (2007)
[08.08] S. C. Chae, J. S. Lee et al., “Random Circuit Breaker Network Model for Unipolar Resistance Switching”, Adv. Mater. 20, 1154 (2008)
[08.09] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai, "Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM," IEDM Tech. Dig., pp. 297-230, (2008)
[08.10] Y. S. Chen, H. Y. Lee et al., “Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity” Electron Devices Meeting (IEDM), IEDM Tech. Dig., pp.105 -108 (2009)
[08.11] W. Y. Chang, Y. T. Ho et al., “Influence of Crystalline Constituent on Resistive Switching Properties of TiO2 Memory Films”, Electrochem. Solid-State Lett. 12, H135 (2009)
[08.12] A. Sawa, “Resistive switching in transition metal oxides”, Mater. Today 11, 28 (2008)
[08.13] D. Ielmini, “Modeling the Universal Set/Reset Characteristics of Bipolar RRAM by Field- and Temperature-Driven”, IEEE TRANSACTIONS ON ELECTRON DEVICES 58, 4309 (2011)
[08.14] S. M. Sze, “Physics of Semiconductor Devices 2nd Edition,” (1983)
[08.15] D. Ielmini and Y. Zhang,” Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices”, J. Appl. Phys. 102, 054517 (2007)

[09.01] T. C. Chang, F. Y. Jian, S. C. Chen and Y. T. Tsai, “Developments in nanocrystal memory”, Mater. Today 14 (12), 608 (2011)
[09.02] F. M. Yang, T. C. Chang et al., “Memory characteristics of Co nanocrystal memory device with HfO2 as blocking oxide”, Appl. Phys. Lett. 90, 132102 (2007)
[09.03] S. C. Chen, T. C. Chang et al., “A novel nanowire channel poly-Si TFT functioning as transistor and nonvolatile SONOS memory”, IEEE Electron Device Lett. 28, 809 (2007)
[09.04] C. T. Tsai, T. C. Chang et al., “Low temperature improvement on silicon oxide grown by electron-gun evaporation for resistance memory applications”, Appl. Phys. Lett. 93, 052903 (2008)
[09.05] J. W. Seo, J. W. Park et al., “Transparent resistive random access memory and its characteristics for nonvolatile resistive switching”, Appl. Phys. Lett. 93, 223505 (2008)
[09.06] C. Yoshida, K. Kinoshita, T. Yamasaki and Y. Sugiyama, “Direct observation of oxygen movement during resistance switching in NiO/Pt film”, Appl. Phys. Lett. 93, 042106 (2008)
[09.07] G.-S. Park, X.-S. Li et al., “Observation of electric-field induced Ni filament channels in polycrystalline NiOx film”, Appl. Phys. Lett. 91, 222103 (2007)
[09.08] S. C. Chae, J. S. Lee et al., “Random Circuit Breaker Network Model for Unipolar Resistance Switching”, Adv. Mater. 20, 1154 (2008)
[09.09] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai, "Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM," IEDM Tech. Dig., pp. 297-230, (2008)
[09.10] Y. S. Chen, H. Y. Lee et al., “Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity” Electron Devices Meeting (IEDM), IEDM Tech. Dig., pp.105 -108 (2009)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code