Responsive image
博碩士論文 etd-0717112-175258 詳細資訊
Title page for etd-0717112-175258
論文名稱
Title
新型高橫向解析度膜厚量測系統之研製
Development of new thickness measurement system with high lateral resolution
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-13
繳交日期
Date of Submission
2012-07-17
關鍵字
Keywords
半導體雷射、外腔雷射、可調雷射、液晶
external cavity laser, liquid crystal, tunable lasers, laser diode
統計
Statistics
本論文已被瀏覽 5714 次,被下載 0
The thesis/dissertation has been browsed 5714 times, has been downloaded 0 times.
中文摘要
本論文中,我們提出利用雷射二極體、透鏡組、光柵、反射介質鏡等元件架設外腔波長可調雷射用以量測膜厚,該法不但有別於過去傳統的量測方法,在縱向解析度上有良好的準確性,同時開發出高橫向解析度。其原理是透過外腔半導體雷射之腔長與輸出波長的關係,並透過透鏡組縮小光斑大小,使用高解析度F.P.干涉儀偵測頻率的變化。藉由藍光做為光源,我們成功得到一橫向解析度20μm的膜厚分佈量測系統,並預期經由半導體雷射橫模之改善(M^2~1),解析度可達μm級。其系統光路架設容易,運算簡便,高敏感度,體積大小重量亦可作為可攜式以方便工業化量測。
Abstract
In this thesis, with external cavity semiconductor laser, a high lateral resolution thickness measurement is proposed and demonstrated. The approach is typical an intra-cavity measurement of focused cell thickness by wavelength tuning of an external cavity laser diode. In addition, using blue light of 406nm as laser diode, higher lateral resolution is also observed. Using the proposed thickness method, the lateral resolution and longitudinal resolution have been demonstrated with 20μm and 0.15μm, respectively. We also discuss the feasibility of μm scaled lateral resolution through improvement of laser diode, such as M^2~1.
目次 Table of Contents
中文審定書-----------------------------------------------------------I
英文審定書----------------------------------------------------------II
中文摘要------------------------------------------------------------III
英文摘要------------------------------------------------------------IV
誌謝-------------------------------------------------------------------V
目錄------------------------------------------------------------------VI
圖次-----------------------------------------------------------------VIII
表次------------------------------------------------------------------XI
第一章序論----------------------------------------------------------1
1-1前言--------------------------------------------------------------1
1-2動機及目的-----------------------------------------------------3
1-3論文架構--------------------------------------------------------4
第二章 外腔半導體雷射量測系統---------------------------5
2-1 外腔半導體雷射的介紹-------------------------------------5
2-1.1 半導體雷射--------------------------------------------------6
2-1.2 波長可調外腔半導體雷射--------------------------------7
2-2 外腔系統之特性與原理-----------------------------------12
2-2.1 波長連續可調外腔半導體雷射原理------------------12
2-2.2 外腔半導體雷射模態躍遷現象------------------------16
2-3 各種量測光學元件其成像品質之方法-----------------19
2-3.1 Mach-Zehnder interferometer------------------------20
2-3.2 Twyman-Green interferometer----------------------21
2-3.3 White light interferometer----------------------------22
2-4 F.P. Interferometer的介紹-------------------------------23
2-5 高斯光束通過透鏡收光原理-----------------------------25
第三章 系統架設與測試-------------------------------------28
3-1 外腔系統架設與特性--------------------------------------28
3-2 系統之穩定性測試與操作條件--------------------------34
3-3 橫向解析度之系統架設-----------------------------------37
3-4 移動旋轉平台對穩定性的影響--------------------------40
第四章 玻片與液晶盒特性量測----------------------------44
4-1 玻片均勻性測試實驗---------------------------------------44
4-2 旋轉坡片定量量測------------------------------------------48
4-3 液晶均勻性量測---------------------------------------------52
4-4 加偏壓下液晶導軸之變化---------------------------------58
第五章 未來與展望-------------------------------------------63
參考文獻-----------------------------------------------------------64
Publication list --------------------------------------------------68
參考文獻 References
[1]N. Watanabe, H. Hamada, F. Funada, Y. Koriyama,”Optical device having a microlens and a process for making microlens”, US Patent 5225935, (1994).
[2]K. Yuichi, “Process for producing mirco lens”, EP0690028 A1 19960103, (1996).
[3]W.R. Cox, T. Chen and D.J. Hayes, “Micro-Optics fabrication by Ink-Jet printing,” OSA Optics & Photonics News, Vol. 12, No. 6, pp. 32-35, June, (2001).
[4] N. F. Borrelli, D. L. Morse, R. H. Bellman,W. L. Morgan,“Photolytic technique for producing microlenses in photosensitive glass”, Applied Optics, 24, pp. 2520-2525, (1985).
[5]D.-S. Ko, “A decompression method for the fabrication of polymer microlens arrays,” Infrared Physics & Technology, 45, pp. 177–180, (2004).
[6]L.i Pan, X. Shen, and L. Lin, “Microplastic lens array fabricated by a hot intrusion process”,Journal of microelectromechanical systems,Vol.13, No.6,pp.1063-1071 December (2004).
[7]T. Miyashita “Standardization for microlens and microlens arrays” JJAP, 46 (8B), pp. 5391–5396(2007).
[8]W. Moench and H. Zappe, “Fabrication and testing of microlens arrays by all-liquid techniques,” J. Opt. A Pure Appl. Opt.6, 330–337 (2004)
[9]T. Miyashita,K. Hamanaka, M. Kato, S. Ishihara, H. Sato, E. Sato, and T. Morokuma, “Wavefront aberration measurement technology for microlens using the mach-zehnder interferometer provided with a projectedaperture,” in Interferometry XII: Applications, W. Osten and E. Novak, eds., Proceedings of SPIE 5532,pp. 117–127, SPIE–The International Society for Optical Engineering, (2004).
[10] S. Reichelt,A. Bieber, B. Aatz, , H. Zappe , “Micro-optics metrology using advanced interferometry”, Proceedings of SPIE, 5856:437-446(2005).
[11]L. Deck and P. de Groot,“High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334 –7338(1994).
[12]S. Reichelt, and H. Zappe, “Combined Twyman-Green and Mach-Zehnder interferometer for microlens testing,” Appl. Opt. 44(27), 5786–5792 (2005).
[13]P. Sandoz, R. Devillers, and A. P. Gomez, “Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry “J. Mod.Opt. 44, 519-534 (1997).
[14]A.Harasaki,J.Schmit, and J. C. Wyant, “Improved verticalscanning interferometry,” Appl. Opt. 13, 2107–2115 (2000).
[15] Y. P. Lan, Y. F. Lin, Y. T Li and R. P. Pan, “Intracavity measurement of liquid crystal layer thickness by wavelength tuning of an external cavity laser diode,” Optics Express, 13, 20, 7905-7912 (2005)
[16]林承毅, ” 液晶膜厚量測系統之研製”, 國立中山大學光電工程研究所碩士論文, (2009)
[17] A. Sharkawy, S. Shi, and D. W. Prather, “Multi-channel wavelength division multiplexing with photonic crystals,” Applied Optics, 40, 14, 2247-2252 (2001).
[18] J. Lipson, C. A. Young, P. D. Yeates, J. C. Masland, S. A. Wartonick, G. T. Harvey, “A four-channel lightwave subsystem using wavelength division multiplexing,” IEEE Journal of Lightwave Technology, 3, 1, 16-20 (1985).
[19] B. E. A. Saleh, M. C. Teich, “Fundamentals Of Photonics Second Edition,” wiley interscience (2007).
[20]王志宇, ”雙半導體雷射與飛秒光頻梳鎖相之研究-兆赫波頻率標準”, 國立中山大學光電工程研究所碩士論文, (2006).
[21]M. W. Maeda, J. S. Patel, D. A. Smith, C. Lin, M. A. Saifi, and A.V. Lenhman, ”An electronically tunable fiber laser with a liquid-crystal etalon filter as the wavelength-tuning wlwment,” IEEE Photon Technology Lett., 2, 787-789 (1990).
[22] J. R. Andrews, ”Low-voltage wavelength tuning of an external cavity diode-laser using a nematic liquid crystal-containing birefringent filter,” IEEE Photon Technology Lett., 2, 334-336 (1990).
[23]F. Favre and D. L. Guen, “820 nm of continuous tenability for an external cavity semiconductor laser,” Electronics Lett., 27, 183-184 (1991).
[24]K. C. Harvey and C. J. Wayatt, “External-cavity diode-laser using a grazing incidence diffraction grating ,” Opt. Lett., 16, 910-912 (1991).
[25] P. Zorabedian, ”Characteristics of an grating-external-cavity semiconductor laser containing intracavity orisn bean expanders ,” J. Lightware Technology Lett., 10, 330-334 (1992).
[26] 郭重佑, ” 利用電致光吸收調變之多通道波長可調 Q-switched 外腔半導體雷射”, 國立中山大學光電工程研究所碩士論文, (2007).
[27] H. Tabuchi, H. Ishikawa, “External grating tunable MQW laser with wide tuning range of 240 nm,” Electronics Lett., 26, 11, 742-743 (1990).
[28] C. A. Brackett, ”Dense wavelength division multiplexing networks :principles and applications,” IEEE Journal on Selected Areas in Communications, 8, 6, 948-964 (1990).
[29] C. J. Hawthorn, K. P. Weber, and R. E. Scholten,” Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Review of Scientific Instruments, 72, 12, 4477-4479 (2001).
[30]Y. P. Lan, R. P. Pan, and C. L. Pan,” Mode-hop-free fine tuning of an external-cavity diode laser with an intracavity liquid crystal cell,” Opt. Lett., 29, 5, 510-512 (2004).
[31] R. Windecker, M. Fleischer, K. Korner, H. J. Tiziani..“Testing micro devices with fringe projection and white-light interferometry.”Opt Lasers Eng;36(2):141–54(2001).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.116.24.105
論文開放下載的時間是 校外不公開

Your IP address is 18.116.24.105
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code