Responsive image
博碩士論文 etd-0717113-021641 詳細資訊
Title page for etd-0717113-021641
論文名稱
Title
滾筒式近場靜電紡PBLG壓電纖維陣列於生物飛行能量收集
Piezoelectricity of hollow cylindrical near-field electrospinning PBLG fiber arrays for energy harvesting from biological flight
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
111
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-29
繳交日期
Date of Submission
2013-08-17
關鍵字
Keywords
能量擷取、PBLG、近場靜電紡絲、滾筒、壓電纖維
energy harvesting, cylinder, PBLG, near-field electrospinning, piezoelectric fibers
統計
Statistics
本論文已被瀏覽 5691 次,被下載 0
The thesis/dissertation has been browsed 5691 times, has been downloaded 0 times.
中文摘要
本研究利用滾筒式近場靜電紡絲製程技術(Cylindrical near-field electrospinning, CNFES),配合田口方法(Taguchi methods)找出最佳製程參數之Poly(γ-benzyl α, L-glutamate, PBLG)壓電纖維,探討其機電能轉換特性及擷取低頻振動能量於生物翼之動態感測效能。調配過程首先將二氯甲烷(Dichloromethane)溶液均勻散佈於PBLG粉末中調配成PBLG高分子溶液並裝填於注射器,經由5×106~1.5×107 V/m電場使液滴突破表面張力而形成泰勒錐狀(Taylor cone),藉由滾筒收集與XY雙軸式數位控制平台移動而形成有序的PBLG壓電纖維。由PBLG壓電纖維之田口方法最佳製程的結果發現,當PBLG溶液濃度提升至18 wt %、滾筒切線速度在2618 mm/s與電場1.5×107 V/m下,所電紡出的纖維進行電壓量測可達89.14 mV;經傅立葉轉換紅外光譜(Fourier-transform infrared spectrometer, FTIR)測得在1650 cm-1波長下的α結晶相,經由施加1.5×107 V/m電場後之取向力提升了3.3倍;經微拉伸試驗(Micro-tensile testing)量測出楊氏係數為3.64 GPa,並導出在PBLG壓電纖維之機電耦合係數在2~8%的範圍;單根PBLG壓電纖維於8MΩ阻抗有效電壓量測下有33.27 mV的電壓輸出與最大的功率輸出138.42 pW,並與聚偏氟乙烯(Polyvinylidene fluoride, PVDF)壓電纖維比較在相同製作量測環境下,當阻抗為6 MΩ時產生39.94 mV的電壓並有最大的功率輸出為265.81 pW。雖輸出功率不及PVDF壓電纖維,但與PVDF相較其 PBLG材料未含氟元素,更適合於生物醫學方面的研究。最終將PBLG壓電纖維搭配指叉式電極貼附於生物翼,進行10~30 Hz (相當於0.01~0.05N之振翅力)的仿生(Bionics)振盪頻率實驗,獲得7.636~14.245 mV之電壓訊號,於未來可提供生物的飛行型態模型建立與獵能及感測裝置校證等依據。
Abstract
In this study, a cylindrical near-field electrospinning (CNFES) process and the Taguchi methods were used to fabricate permanent piezoelectricity of poly(γ-benzyl α, L-glutamate) (PBLG) piezoelectric fibers. Exploring the electrical and mechanical energy conversion characteristics of PBLG piezoelectric fibers. The electrical and mechanical energy conversion characteristics of PBLG piezoelectric fibers applied on biological wings are aim to capture low-frequency energy. First, the PBLG powder was mixed with dichloromethane solution uniformly to prepare PBLG macromolecular solution. High electric field (5×106~1.5×107 V/m) generated sufficient electrostatic force to deform the polymer meniscus into a conical shape (Taylor cone) and subsequently induce a polymer jet from the tip of the Taylor cone. When the droplet overcame the surface tension of the solution, a PBLG piezoelectric fiber was spun from the Taylor cone tip. With using PBLG piezoelectric fiber process and Taguchi method, when the concentration of PBLG increased to 18%, tangential velocity of cylindrical collection was firxed at measured 2618 mm/s, and the electric field was set at 1.5×107 V/m, the voltage was up to 89.14 mV. After Fourier transform infrared spectroscopy (FTIR) measurement the piezoelectric PBLG fibers appear intensely infrared spectrum of absorption of α-helix structure at the 1650 cm-1. When the electric field increased to 1.5×107 V/m, the Dipole-dipole attraction of α crystalline phase enhanced 3.3-fold. The Young's modulus was measured of 3.64 GPa using micro-tensile testing. The electromechanical coupling coefficient of PBLG fiber was calculated of 2~8%. The voltage output of single piezoelectric fiber was measured under 8 MΩ resistance. The maximum power output is 138.42 pW. Piezoelectric polyvinylidene fluoride (PVDF) fibers have same process and measurement environment, whose impedance is 6 MΩ and maximum power output is 265.81 pW. But non-toxic piezoelectric was developed. Finally, PBLG piezoelectric fibers directly patterned on interdigital electrode for harvesting energy in biological winging process vibration frequency 10~30 Hz (equivalent to 0.01-0.05 N). The voltage was rarely from 7.64 mV to 14.25 mV. The technology of biological modeling could be used as sensors and harvesters in the future.
目次 Table of Contents
摘要 III
Abstract IV
圖目錄 IX
表目錄 XIV
第一章 緒論 1
1-1 前言 1
1-2 研究背景與動機 1
1-3 研究目的 2
第二章 文獻回顧 4
2-1壓電效應 4
2-1-1正壓電效應 4
2-1-2逆壓電效應 5
2-1-3極化處理 6
2-2 壓電材料相關研究 6
2-3 PBLG壓電材料之特性與相關研究 11
2-4靜電紡絲製程 13
2-5能量擷取技術 16
第三章 研究方法 19
3-1 PBLG&PVDF先驅溶液調配流程 19
3-1-1準備材料 19
3-1-2調配PBLG&PVDF先驅溶液過程 20
3-2 滾筒式近場靜電紡絲原理 21
3-3 滾筒式近場靜電紡絲之設備 22
3-4、田口式品質工程 24
3-4-1產品/製程之參數 26
3-4-2訊號雜音比 26
3-4-3直交表 27
3-4-4變異數分析 28
3-4-5田口方法之基本步驟 29
3-5、掃描式電子顯微鏡 29
3-6、傅立葉轉換紅外光譜 30
3-7、微型機性測試機 31
3-8、量測儀器 32
3-8-1、電壓量測 32
3-8-2、電流量測 33
3-8-3、力感測器 34
3-9、能量擷取裝置製作 34
3-10、於生物獵能之能量擷取裝置製作 36
第四章 結果與討論 38
4-1 PBLG滾筒式近場靜電紡絲 38
4-2 PBLG溶液濃度與線徑之關係 40
4-3 電場與線徑之關係 41
4-4 滾筒切線速度與線徑之關係 42
4-5 田口方法之實驗 43
4-5-1 製程參數設計 44
4-5-2 田口方法之實驗結果 47
4-5-3 變異數分析ANOVA 57
4-5-4 確認最佳製程參數並與PVDF壓電纖維比較 58
4-6 FTIR觀察與分析 60
4-7 拉伸實驗 63
4-8 PBLG能量擷取裝置之電性探討 66
4-8-1 電壓量測 67
4-8-2 電流量測 70
4-8-3 力量(N)與輸出電壓(V)與頻率(Hz)的關係 74
4-8-4 PBLG之d33壓電係數探討 76
4-9單根PBLG與PVDF壓電纖維電性比較...................................................77
4-10 生物獵能之電性探討 81
4-10-1探討量測裝置 81
4-10-2 生物飛行電性量測 84
第五章 結論及未來展望 86
5-1 結論 86
5-2未來展望 87
參考文獻 88
參考文獻 References
1. J.F. Nye, “Physical properties of crystals,” Oxford, U.K.: Clarend Press, 1957.
2. D. Sun, C. Chang, S. Li and L.W. Lin, “Near-field electrospinning,” Nano Letters., Vol. 6, No. 4, pp. 839-842, 2006.
3. 吳朗,“電子陶瓷:壓電陶瓷”,全欣資訊圖書股份有限公司,1994年12月
4. J.F. Nye, “Physical properties of crystals,” Oxford, U.K.: Clarend Press, 1957.
5. X. Chen, S. Xu and N. Yao, “1.6 V Nanogenerator for mechanical energy harvesting using PZT nanofibers,” Nano Letters, Vol. 10, No. 6, pp. 2133-2137, 2010.
6. Y. Qi, J. Kim, T.D. Nguyen, B. Lisko, P.K. Purohit, M.C. Mcalpine, “Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons,” Nano Letter, Vol. 11, Issue 3, pp. 1331-1336, 2011.
7. L. Vayssieres, K. Keis, A. Hagfeldt, S.E. Lindquist, “Three-dimensional array of highly oriented crystalline ZnO microtubes,” Chemistry of Materials, Vol. 13, Issue 12, pp. 4395-4398, 2001.
8. C. Ye, Y. Bando, G. Shen, D. Golberg, “Thickness-dependent photocatalytic performance of ZnO nanoplatelets,” The Jjournal of Physical Chemistry B, Vol. 110, Issue 31, pp. 15146-15151, 2006.
9. C. Ye, Y. Bando, G. Shen, D. Golberg, “A novel method to measure the generated voltage of a ZnO nanogenerator,” Nanotechnology, Vol. 22, Issue 39, pp. 395204-395208, 2011.
10. Z.L. Wang, J. Song, “Piezoelectric nanogenerators based on ZnO nanowire arrays,” Science, Vol. 312, Issue 5771, pp. 242-246, 2006.
11. X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, Z.L. Wang, “Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire,” Nano Letters, Vol. 6, Issue 12, pp. 2768-2772, 2006.
12. Z.L. Wang, “Energy harvesting for self-powered nanosystems,” Nano Research, Vol. 1, Issue 1, pp. 1-8, 2008.
13. J. Lin, P. Fei, J. Song, X. Wang, C, Lao, R. Tummaia, Z.L. Wang, “Carrier density and schottky barrier on the performance of DC nanogenerator,” Nano Letter, Vol. 8, Issue 1, pp. 328-332, 2008.
14. Z.L. Wang, X.D. Wang, J. Song, J. Liu, Y.F. Gao, “Piezoelectric nanogenerators for self-powered nanodevices,” IEEE Computer Society, Vol. 7, Issue 1, pp. 49-55, 2008.
15. Y. Hu, Y. Zhang, C. Xu, G. Zhu, Z.L. Wang, “High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display,” Nano Letter, Vol. 10, Issue 12 , pp. 5025-5031, 2010.
16. G. Zhu, R. Yang, S. Wang, Z.L. Wang, “Flexible high-output nanogenerator based on lateral ZnO nanowire array,” Nano Letter, Vol. 10, Issue 8, pp. 3151-3155, 2010.
17. S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z.L. Wang, “Self-powered nanowire devices,” Nature Nanotechnology, Vol. 5, Issue 5, pp. 366-373, 2010.
18. S. Xu, Z.L. Wang, “One-dimensional ZnO nanostructures: solution growth and functional properties,” Nano Research, Vol. 4, Issue 11, pp. 1013-1098, 2011.
19. S. Zhang, Y. Shen, H. Fang, S. Xu, J. Song, Z.L. Wang, “Growth and replication of ordered ZnO nanowire arrays on general flexible substrates,” Journal of Materials Chemistry, Vol. 20, Issue 47, pp.10606-10610, 2010.
20. J. F.Nye, “Physical Properties of Crystals,” Oxford, Clarend on Press, 1964.
21. H Kawai, “The piezoelectricity of poly (vinylidene fluoride),” Japanese Journal of Applied Physics, Vol. 8, pp. 975-976, 1969.
22. C. Chang, Y.K. Fuh and L.W. Lin, ”A direct-write piezoelectric PVDF nanogenerator,” Solid-State Sensors, Actuators and Microsystems Conference, pp. 1485-1488, 2009.
23. J.M. Ha, H.O. Lim and N.J. Jo, “Actuation behaviorof cp actuator based on polypyrrole and PVDF,” Advanced Materials Research, Vol. 29, pp. 363-366, 2007.
24. T.T. Wang, J.M. Herbert and A.M. Glass, “The applications of ferroelectric polymers,” Chapman & Hall, New York, 1988.
25. I.S. Elashmawi, E.M. Abdelrazek, H.M. Ragab and N.A. Hakeem, “Structural, optical and dielectric behavior of PVDF films filled with different concentrations of iodine,” Physica B: Condensed Matter, Vol. 405, pp. 94–98, 2010.
26. M. Neidhofer, F. Beaume, L. Ibos, A. Bernes and C. Lacabanne, “Structural evolution of PVDF during storage or annealing,” Polymer, Vol. 45, pp. 1679–1688, 2004.
27. Y. Peng and P. Wu, “A two dimensional infrared correlation spectroscopic study on the structure changes of PVDF during the melting process,” Polymer, Vol. 45, pp. 5295–5299, 2004.
28. P. Sajkiewicz, A. Wasiak and Z. Goclowski, “Phase transitions during stretching of poly (vinylidene fluoride),” European Polymer Journal, Vol. 35, pp.423–429, 1999.
29. Y. Chen and C.Y. Shew, “Conformational behavior of polar polymer models under electric fields,” Chemical Physics Letters, Vol. 378, pp. 142–147, 2003.
30. A. G. Walton, J. Blackwell, In Biopolymers, Academic Press: New York pp.181, 1973
31. H. Block, In Poly(γ-benzyl-L-glutamate) and other glutamic acid containing polymers; Gordon and Breach Science Publishers: New York 1983.
32. T. Jaworek, D. Neher, G. Wegner, R. H. Wieringa, A. J. Schouten, Science 1998, 279, 57.
33. S. M. Yu, C. M. Soto, D. A. J. Tirrell, A. Chem, Soc. 2000, 122, 6552
34. C. G. Worley, R. W. Linton, E. T. Samulski, Langmuir 1995, 11, 3805.
35. S. M. Yu, V. P. Conticello, G. Zhang, C. Kayser, M. J. Fournier, T. L. Mason, and D. A. Tirrell, “Smectic ordering in solutions and films of a rod-like polymer owing to monodispersity of chain length,”Nature, Vol. 389, No. 11, pp. 167-170, 1997.
36. P. Papadopoulos, G. Floudas,“Self-Assembly and Dynamics of Poly(γ-benzyl-L-glutamate) Peptides,” Biomacromolecules, vol. 5, pp. 81-91, 2004.
37. J. Kim, J. Park, S. Lee, D. Sohn, “Surface-Grafting of Polyglutamate on Si Wafer using Micro Contact Printing,”Molecular Crystals and Liquid Crystals, Vol. 464, pp. 211-216, 2007.
38. D. Farrar, J. E. West, I. J. Busch-Vishniacd and S. M. Yua, “Fabrication of polypeptide-based piezoelectric composite polymer film,” Scripta Materialia, Vol. 59, pp. 1051-1054, 2008.
39. H. TANG, D. ZHANG, “Poly(γ-benzyl-L-glutamate)-Functionalized Single-Walled Carbon Nanotubes from Surface-Initiated Ring-Opening Polymerizations of N-Carboxylanhydride,” Polymer Chemistry, Vol. 48, pp. 2340–2350, 2010.
40. Y. Hwang, Y. Je, D. Farrar, J. E. West, S. M. Yu, W. Moon, “Piezoelectric properties of polypeptide-PMMA molecular composites fabricated by contact charging,” Polymer, Vol. 52, pp. 2723-2728, 2011.
41. R. Ravichandran, J. Venugopal, S. Sundarrajan, S. Mukherjee, “Ramakrishna S. Biomaterials.,” Vol. 33, pp. 846-855, 2012.
42. S. T. Li, Y. C. Lin, S. W. Kuo, W. T. Chuang and J. L. Hong, " Aggregation induced emission enhancement in relation to the secondary structures of poly(g-benzyl-L-glutamate) containing a fluorescent tetraphenylthiophene moiety," Polymer Chemistry, Vol.3, pp.2393-2402
43. K. Jahanshahi, I. Botiz, R. Reiter, R. Thomann, B. Heck, R. Shokri, W. Stille, and G. Reiter, “Crystallization of Poly(γ-benzyl L glutamate) in Thin Film Solutions: Structure and Pattern Formation,” Macromolecules, Vol. 46, pp. 1470-1476, 2013.
44. X.L. Rayleigh, “On the equilibrium of liquid conducting masses charged with electricity,” London, Edinburgh, and Dublin Phil. Mag. Vol. 44, pp. 184-186, 1882.
45. J.F. Cooley, “Apparatus for electrically dispersing fluids,” US Patent Specification, 692631, 1902.
46. A. Formhals, US Patent, No. 1975504, 1934.
47. P.K. Baumgarten, “Electrostatic spinning of acrylic microfibers,” Journal of Colloid and Interface Science, Vol. 36, Issue 1, pp. 71-79, 1971.
48. K. I. Minato, K. Ohkawa, H. Yamamoto, “Chain Conformations of Poly(γ-benzyl-L-glutamate) Pre and Post an Electrospinning Process,” Macromol. Biosci., Vol. 6, pp. 487–495, 2006
49. G.F. Zheng, L.Y. Wang, H.L. Wang, D.H. Sun, W.W. Li and L.W. Lin, "Precision Deposition of a Nanofibre by Near-Field Electrospinning," Journal of Physics D: Applied Physics, Vol. 43, 415501, 2010.
50. J. Pu, X.J. Yan, Y.D. Jiang, C. Chang and L.W. Lin, “Piezoelectric actuation of a direct-write electrospun PVDF fiber,” Micro Electro Mechanical Systems (MEMS), 2010 IEEE 23rd International Conference , pp. 1163-1166, 2010.
51. C. Chang, V.H. Tran, J. Wang, Y. Fuh and L.W. Lin, “Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency,” Nano Lett., Vol.10, No. 2, pp. 726–731, 2010.
52. J. Pu, X.J. Yana, Y.D. Jiang, C. Chang, L.W. Lin. ”Piezoelectric actuation of direct-write electrospun fibers,” Sensors and Actuator Vol.164, pp. 131-136, 2010.
53. G.F. Zheng, L.Y. Wang, H.L. Wang, D.H. Sun, W.W. Li and L.W. Lin, ”Deposition characteristics of direct-write suspended micro/nano-structures,” Advanced Materials Research, Vols. 60-61, pp. 439-444, 2009.
54. C. Chang, Y.K. Fuh and L.W. Lin, “A direct-write piezoelectric PVDF nanogenerator,” 15th International Conference on Solid-State Sensors, Actuators and Microsystems, Denver, pp. 1485-1488. 2009.
55. C. Chang, K. Limkrailassiri and L.W. Lin, “Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns,” Appl. Phys. Lett., Vol. 93, 123111, 2008.
56. D. Farrar , K. Ren , D. Cheng , S. Kim , W. Moon , W. L. Wilson , J. E. West , S. Michael Yu, "Permanent Polarity and Piezoelectricity of Electrospun α-Helical Poly(α-Amino Acid) Fibers," Advanced Materials, vol. 23, pp. 3594-3598, 2011.
57. K. Tsuboi, E. Marcelletti, H. Matsumoto, M. Ashizawa, M. Minagawa, H. Furuya, A. T. Abe, “Preparation of poly(γ-benzyl-L-glutamate) nanofibers by electrospinning from isotropic and biphasic liquid crystal solutions,” Polymer Journal , Vol. 44, pp. 360-365, 2012.
58. K. Ren, W. L. Wilson, J. E. West, Q.M. Zhang, S. M. Yu, “Piezoelectric property of hot pressed electrospun poly(γ-benzyl-α, L-glutamate) fibers,” Appl Phys A, Vol. 107, pp.639-646, 2012.
59. Y. Hakamada, N. Ohgushi, N. F. Kondo and T. Matsuda, “Electrospun Poly(γ -Benzyl-L-Glutamate) and Its Alkali-Treated Meshes: Their WaterWettability and Cell-Adhesion Potential,” Journal of Biomaterials Science, Vol. 23, pp. 1055-1067, 2012.
60. Y. Hakamada, N. Ohgushi, N. F. Kondo and T. Matsuda, “Electrospun Poly(γ-Benzyl-LGlutamate) and Its Alkali-Treated Meshes: Their Water Wettability and Cell-Adhesion Potential,” Journal of Biomaterials Science, Polymer Edition, Vol. 23, Issue 8, pp.1055-1067, 2012.
61. J. Kymissis, C. Kendall, J. Paradiso and N. Gershenfeld, “Parasitic Power Harvesting in Shoes,” Second IEEE International Symposium on Wearable Computers, Pittsburgh, PA, pp. 132-139, 1998.
62. J.Y. Chang and M. Gutierrez, “Self-Powered Kinetic Energy Harvesters for Seek-Induced Vibrations in Hard Disk Drives,” Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol. 4, No. 1, pp. 96–106, 2010.
63. B. O'Regan and M. Grätzel,“A Low-cost, High-efficiency Solar Cell based on Dye-sensitized Colloidal TiO2 Films,” Nature, Vol. 353, pp.737-740, 1991.
64. E.O. Torresl and G.A. Rincon-Mora, “Long-Lasting, Self-Sustaining, and Energy-Harvesting System-in-Package (SIP) Wireless Micro-Sensor Solution,” International Conference on Energy, Environment and Disasters, Charlotte, North Carolina, USA, pp. 24-30, 2005.
65. S.P. Beeby, R.N. Torah, M.J. Tudor, P. Glynne-Jones, T. O'Donnell, C.R. Saha and S. Roy, “A Micro Electromagnetic Generator for Vibration Energy Harvesting,” Journal of Micromechanics and Microengineering, Vol. 17, No. 7, pp. 1257-1265, 2007.
66. J.Q. Liu, H.B. Fang, Z.Y. Xu, X.H. Mao, X.C. Shen, D. Chen, H. Liao and B.C. Cai, “A MEMS-Based Piezoelectric Power Generator Array for Vibration Energy Harvesting,” Microelectronics Journal, Vol.39, No. 5, pp. 802–806, 2008.
67. http://cqd.blogspot.com/2008/07/blog-post_24.html
68. C.T.Pan, Z.H. Liu, Y.C. Chen, C.F. Liu, “ Design and Fabrication of Flexible Piezo- Microgenerator by Depositing ZnO Thin Films on PET Substrates,” Sensors and Actuators A: Physical, Vol. 159, Issue 1, pp. 96-104, 2010.
69. H.B. Fang, J.Q. Liu, Z.Y. Xu, L. Donga, L. Wang, D. Chen, B.C. Cai and Y. Liu, “Fabrication and Performance of MEMS-Based Piezoelectric Power Generator for Vibration Energy Harvesting,” Microelectronics Journal, Vol. 37, No. 11, pp. 1280–1284, 2006.
70. 鍾清章,“田口式品質工程導論”,中華民國品質學會,台北,2003。
71. 吳復強,“田口品質工程”,全威圖書,2002。
72. 李輝煌,“田口方法-品質設計原理與實務”,國立成功大學工程科學系,高立圖書有限公司,2000。
73. J. Chang, M. Dommer, C. Chang and L.W. Lin, ”Piezoelectric nanofibers for energy scavenging applications,” Nano Energy, Vol. 1, pp. 356-371, 2012.
74. 點膠科技股份有限公司,http://www.d-t.com.tw/parts.htm/
75. Z.H. Liu, C.T. Pan, L.W. Lin, H.W. Li, Z.Y. Ou, J.C. Huang, ”Mechanical Properties of Piezoelectric PVDF/MWCNT Fibers Prepared by Flat/Hollow Cylindrical Near-Field Electrospinning Process, ” The 8th Annual IEEE International Conference by Nano/Micro Engineered and Molecular Systems, pp.707-710, 2013
76. S. C. Lin, C. Kamsler, US Patent 6362271, 2002.
77. Z. H. Liu, L. W. Lin, C. T. Pan, Z. Y. Ou, "Pre-Strained Piezoelectric PVDF Nanofiber Array Fabricated by Near-Field Electrospining on Cylindrical Process for Flexible Energy Conversion," Advanced Materials Research, Vol. 566, pp.462-465, 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.47.253
論文開放下載的時間是 校外不公開

Your IP address is 3.145.47.253
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code