Responsive image
博碩士論文 etd-0717115-161656 詳細資訊
Title page for etd-0717115-161656
論文名稱
Title
以分子動力學模擬二硫化鉬奈米線機械性質與熱穩定性質
Investigation on the mechanical properties and thermal stability of molybdenum disulfide nanowires by molecular dynamics simulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-10
繳交日期
Date of Submission
2015-08-17
關鍵字
Keywords
密度泛函理論、分子動力學、二硫化鉬奈米線、熱穩定性質、機械性質
MoS2 nanowire, mechanical properties, thermal stability properties, Density functional theory, molecular dynamic
統計
Statistics
本論文已被瀏覽 5640 次,被下載 712
The thesis/dissertation has been browsed 5640 times, has been downloaded 712 times.
中文摘要
本論文利用模擬方法建構極細鉬奈米線與二硫化鉬奈米線,並分析其結構、機械性質與熱性質。本研究內容分成兩個部份:
第一部份利用basin-hopping方法搭配tight-binding勢能預測出極細鉬奈米線之穩定結構,依不同線徑尺寸分成6-1、10-4與10-5-1三種鉬奈米線,之後利用分子動力學對鉬奈米線做模擬拉伸測試與熱穩定性質。經由分析鉬奈米線的機械性質結果可知,鉬奈米線具有良好的延性,其楊氏模數隨尺寸縮小而下降。在熱性質方面,三條奈米線之熔點大約介在1230K~2090K之間,這結果顯示,極細鉬奈米線具有相當良好的熱穩定性,並可應用在電子元件。
第二部份利用相同方法搭配Stillinger Weber (SW)勢能預測出極細二硫化鉬奈米線之穩定結構,兩條奈米線半徑分別為1Å與1.7Å,建立穩定結構後利用分子動力學探討二硫化鉬奈米線之機械性質與熱穩定性質,分析二硫化鉬奈米線的機械性質結果可得,二硫化鉬奈米線也具有良好的延性,並且楊氏模數隨尺寸縮小而下降,在熱穩定性方面,在熱性質方面,三條奈米線之熔點大約介在540K~650K之間,這結果顯示,二硫化鉬奈米線在室溫下仍會存在。
比較鉬與二硫化鉬奈米線與鉬奈米線之機械性質與熱穩定性質,在機械性質方面二硫化鉬具有較好的延性,而在熱穩定性質方面,兩種奈米線在室溫下皆會存在,比較結果鉬奈米線熔點較高,熱穩定性質較佳。
Abstract
In this study, We use simulation method to build ultrathin Mo nanowires and MoS2 nanowires,and analysis their structure, mechanical properties, and thermal properties. I divided my study into two part:
First the structure of ultrathin Mo nanowires were predicted by the simulated annealing basin-hopping method (SABH) with the tight-binding potential. Depending on different size of diameter it will divide into 6-1, 10-4, 10-5-1 three type. The mechanical properties and thermal stability of Mo nanowires were further examined by the molecular dynamic (MD) calculation. The mechanical properties results of nanowires are presented that Mo nanowires possess good ducility and their young’s moduli decrease with deacreasing size. In term of thermal sability, these Mo nanowire melting point will at 1230K~2090K, it can applicate as electronic device.
Second the structure of ultrathin MoS2 nanowires were predicted by the simulated annealing basin-hopping method with the stilliger-weber potential. The mechanical properties and thermal stability of MoS2 nanowires were further examined by the molecular dynamic calculation. The mechanical properties results of nanowires are presented that Mo nanowires also possess good ducility and their young’s moduli decrease with deacreasing size. In term of thermal sability, these Mo nanowire melting point will at 540K~650K, it will presence at room temperature.
Compare Mo nanowires and MoS2 nanowires, in mechanical properties two kind of nanowires, Mo nanowires possess good ducility. But in thermal properties both two kind of nanowires will presence at room temperature, Mo nanowires has good thermal stability.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
英文摘要 iv
目錄 vi
圖次 viii
表次 x
第一章 緒論 1
1.1 研究目的與動機 1
1.2 鉬一維奈米結構文獻回顧 3
1.2.1 鉬一維奈米結構文獻回顧 3
1.2.2 二硫化鉬一維奈米結構文獻回顧 4
1.3 本文架構 7
第二章 模擬方法與理論介紹 8
2.1 分子靜力學理論 8
2.1.1 Big-bang計算法 8
2.1.2 Basin-hopping計算法 9
2.1.3 懲罰函數(Penalty function) 11
2.1.4 勢能函數 (Potential function) 12
2.2 密度泛函理論(DENSITY FUNCTIONAL THEORY, DFT) 16
2.2.1 電子密度 16
2.2.2 托馬斯-費米模型(Thomas-Fermi model) 17
2.2.3 霍恩貝格-柯恩理論(Hohenberg-Kohn model) 17
2.2.4 柯恩-軒姆方程式(Kohn-Sham equation) 18
2.2.5 交換相關函數(Exchange-Correlation Function) 20
2.3 分子動力學理論基礎及方法 22
2.3.1 積分法則 23
2.3.2 時間步階選取 24
2.3.3 系綜(Ensemble) 25
2.3.4 諾斯-胡佛恆溫法(Nosé-Hoover) 26
2.4 原子級應力分析 28
2.5 原子距離變化量統計 32
第三章 結果與討論 33
3.1 鉬奈米線幾何結構分析 34
3.2 鉬奈米線之機械性質分析 35
3.3 鉬奈米線之熱穩定性質分析 38
3.5 二硫化鉬奈米線之機械性質分析 42
3.6 二硫化鉬奈米線之熱穩定性分析 46
3.7 鉬與二硫化鉬奈米線機械性質與熱穩定性質比較 49
第四章 結論與建議 50
4.1 結論與建議 50
4.2 未來展望 52
參考文獻 53
參考文獻 References
[1] N. A. Dhas, C. P. Raj, and A. Gedanken, "Synthesis, Characterization, and Properties of Metallic Copper Nanoparticles," Chem. Mater., vol. 10, pp. 1446-1452, 1998.
[2] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991.
[3] T.-J. Hsueh, C.-L. Hsu, S.-J. Chang, and I. C. Chen, "Laterally grown ZnO nanowire ethanol gas sensors," Sensors and Actuators B: Chemical, vol. 126, pp. 473-477, 2007.
[4] Y. J. Choi, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park, and J. H. Lee, "Novel fabrication of an SnO(2) nanowire gas sensor with high sensitivity," Nanotechnology, vol. 19, p. 095508, Mar 5 2008.
[5] J. Lou, L. Tong, and Z. Ye, "Modeling of silica nanowires for optical sensing," Optical Society of America, vol. 3, pp. 2135-2140, 2005.
[6] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species," Science, vol. 293, pp. 1289-1292, 2001.
[7] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, "High Performance Silicon Nanowire Field Effect Transistors," Nano Letters, vol. 3, pp. 149-152, 2003.
[8] S. Barraud, R. Coquand, M. Cassé, M. Koyama, J.-M. Hartmann, V. Maffini-Alvaro, et al., "Performance of omega-shaped-gate silicon nanowire MOSFET with diameter down to 8 nm," Electron Device Letters, vol. 33, pp. 1526-1528, 2012.
[9] J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, and C. M. Lieber, "Ge/Si nanowire heterostructures as high-performance field-effect transistors," Nature, vol. 441, pp. 489-93, May 25 2006.
[10] Z. L. Wang and J. Song, "Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays," Science, vol. 312, pp. 242-246, 2006.
[11] M. A. Zimmler, T. Voss, C. Ronning, and F. Capasso, "Exciton-related electroluminescence from ZnO nanowire light-emitting diodes," Applied Physics Letters, vol. 94, p. 241120, 2009.
[12] Q. H. Li, Q. Wan, Y. X. Liang, and T. H. Wang, "Electronic transport through individual ZnO nanowires," Applied Physics Letters, vol. 84, p. 4556, 2004.
[13] S. Hoffmann, F. Östlund, J. Michler, H. J. Fan, M. Zacharias, S. H. Christiansen, et al., "Fracture strength and Young’s modulus of ZnO nanowires," Nanotechnology, vol. 18, p. 205503, 2007.
[14] D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, "Thermal conductivity of individual silicon nanowires," Applied Physics Letters, vol. 83, p. 2934, 2003.
[15] L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, "Engineering light absorption in semiconductor nanowire devices," Nature Materials, vol. 8, pp. 643-647, 2009.
[16] D. H. Qin, L. Cao, Q. Y. Sun, Y. Huang, and H. L. Li, "Fine magnetic properties obtained in FeCo alloy nanowire arrays," Chemical Physics Letters, vol. 358, pp. 484-488, 2002.
[17] Z. Liu and P. C. Searson, "Single Nanoporous Gold Nanowire Sensors," J. Phys. Chem. B, vol. 110, pp. 4318-4322, 2006.
[18] J. Zhou, N.-S. Xu, S.-Z. Deng, J. Chen, J.-C. She, and Z.-L. Wang, "Large-Area Nanowire Arrays of Molybdenum and Molybdenum Oxides Synthesis and Field Emission Properties," Adv. Master, 2003.
[19] S. J. Wang, H. Wang, K. Du, W. Zhang, M. L. Sui, and S. X. Mao, "Deformation-induced structural transition in body-centred cubic molybdenum," Nat Commun, vol. 5, p. 3433, 2014.
[20] A. Kovic, A. Znidarsic, A. Jesih, A. Mrzel, M. Gaberscek, and b. Hassanien, "Growth of Large-Area Aligned Molybdenum Nanowires by High Temperature Chemical Vapor Deposition Synthesis, Growth Mechanism, and Device Application," J.Phy.Chem.B, 2006.
[21] J.-Y. Kim and J. R. Greer, "Size-dependent mechanical properties of molybdenum nanopillars," Applied Physics Letters, vol. 93, p. 101916, 2008.
[22] M. Chhowalla and G. A. J. Amaratunga, "Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear," Nature, vol. 407, pp. 164-167, 2000.
[23] I. B. Jr. and A. M. Silva, "Probing Topological Electronic Effects in Catalysis:Thiophene Adsorption on NiMoS and CoMoS Clusters," J. Braz. Chem. Soc, vol. 23, pp. 1789-1799, 2012.
[24] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," narture, vol. 7, pp. 699-712, 2012.
[25] J. Wu, H. Schmidt, K. K. Amara, X. Xu, G. Eda, and B. Ozyilmaz, "Large thermoelectricity via variable range hopping in chemical vapor deposition grown single-layer MoS2," Nano Lett, vol. 14, pp. 2730-4, May 14 2014.
[26] W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, et al., "Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics," Nature, vol. 514, pp. 470-4, Oct 23 2014.
[27] Y. Feldman, E. Wasserman, D. J. Srolovitz, and R. Tenne, "High-Rate, Gas-Phase Growth of MoS2 Nested Inorganic Fullerenes and Nanotubes," Science, vol. 267, pp. 222-225, January 13, 1995 1995.
[28] C. M. Zelenski and P. K. Dorhout, "Template Synthesis of Near-Monodisperse1 Microscale Nanofibers and Nanotubules of MoS2," J. Am. Chem. Soc, vol. 120, pp. 134-142, 1998.
[29] W.-J. Li, E.-W. Shi, J.-M. Ko, Z.-z. Chen, H. Ogino, and T. Fukuda, "Hydrothermal synthesis of MoS2 nanowires," Journal of Crystal Growth, vol. 250, pp. 418-422, 2003.
[30] F. Wang, P. Stepanov, M. Gray, and C. N. Lau, "Annealing and transport studies of suspended molybdenum disulfide devices," Nanotechnology, vol. 26, p. 105709, Mar 13 2015.
[31] S. Xiong and G. Cao, "Molecular dynamics simulations of mechanical properties of monolayer MoS2," Nanotechnology, vol. 26, p. 185705, May 8 2015.
[32] D. B. Zhang, T. Dumitrică, and G. Seifert, "Helical Nanotube Structures of MoS2 with Intrinsic Twisting: An Objective Molecular Dynamics Study," Physical Review Letters, vol. 104, 2010.
[33] E. W. Bucholz and S. B. Sinnott, "Mechanical behavior of MoS2 nanotubes under compression, tension, and torsion from molecular dynamics simulations," Journal of Applied Physics, vol. 112, p. 123510, 2012.
[34] L. F. Seivane, H. Barron, S. Botti, M. A. Marques, A. Rubio, and X. Lopez-Lozano, "Atomic and electronic properties of quasi-one-dimensional MOS nanowires," J Mater Res, vol. 28, pp. 240-249, 2013.
[35] K. A. Jackson, M. Horoi, I. Chaudhuri, T. Frauenheim, and A. A. Shvartsburg, "Unraveling the Shape Transformation in Silicon Clusters," Physical Review Letters, vol. 93, 2004.
[36] D. J. Wales and J. P. K. Doye, "Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms," The Journal of Physical Chemistry A, vol. 101, pp. 5111-5116, 1997/07/01 1997.
[37] D. C. Liu and J. Nocedal, "On the Limited Memory Bfgs Method for Large-Scale Optimization," Mathematical Programming, vol. 45, pp. 503-528, Dec 1989.
[38] S. S. Tripathi and K. S. Narendra, "OPTIMIZATION USING CONJUGATE GRADIENT METHODS," Ieee Transactions on Automatic Control, vol. AC15, pp. 268-&, 1970.
[39] G. N. Vanderplaats, Numerical optimization techniques for engineering design: with applications vol. 1: McGraw-Hill New York, 1984.
[40] F. Cleri and V. Rosato, "Tight-binding potentials for transition metals and alloys," Physical Review B, vol. 48, pp. 22-33, 07/01/ 1993.
[41] F. H. Stillinger and T. A. Weber, "Computer simulation of local order in condensed phases of silicon," Physical Review B, vol. 31, pp. 5262-5271, 1985.
[42] J.-W. Jiang, H. S. Park, and T. Rabczuk, "Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity," Journal of Applied Physics, vol. 114, p. 064307, 2013.
[43] P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," Physical Review, vol. 136, pp. B864-B871, 11/09/ 1964.
[44] D. R. Hartree, "The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods," Mathematical Proceedings of the Cambridge Philosophical Society, vol. 24, pp. 89-110, 1928.
[45] W. Kohn and L. J. Sham, "Self-Consistent Equations Including Exchange and Correlation Effects," Physical Review, vol. 140, pp. A1133-A1138, 11/15/ 1965.
[46] D. M. Ceperley and B. J. Alder, "Ground State of the Electron Gas by a Stochastic Method," Physical Review Letters, vol. 45, pp. 566-569, 08/18/ 1980.
[47] B. J. O. Teleman, S. Engstrom, "A molecular-dynamics simulation of a water model with intramolecular defgrees of freedom," Mol. Phys., vol. 60, pp. 193-203, 1987.
[48] S. Nose, "A unified formulation of the constant temperature molecular-dynamics methods," J. Chem. Phys., vol. 81, pp. 511-519, 1984.
[49] S. C. M.S. Lee, D.G. Kanhere, "First-principles investigation of finite-temperature behavior in small sodium clusters," J. Chem. Phys., vol. 123, 2005.
[50] M. S. L. S.M. Ghazi, D.G. Kanhere, " The effects of electronic structure and charged state on thermodynamic properties: An ab initio molecular dynamics investigations on neutral and charged clusters of Na-39, Na-40, and Na-41," J. Chem. Phys., vol. 128, 2008.
[51] A. R. Leach, Molecular modelling: principles and applications: Pearson Education, 2001.
[52] D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to applications vol. 1: Academic press, 2001.
[53] S. N. a. C. S. N. Chandra, "Local elastic properties of carbon nanotubes in the presence of tone-wales defects," Physical Review B, vol. 69, p. 094101, 2004.
[54] M. H. N. Tokita, C. Azuma and T. Dotera, "Voronoi space division of a polymer: Topological effects, free volume, and surface end segregation," Journal of Chemical Physics, vol. 120, pp. 496-505, 2004.
[55] N. Chandra, S. Namilae, and C. Shet, "Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects," Physical Review B, vol. 69, Mar 2004.
[56] N. Tokita, M. Hirabayashi, C. Azuma, and T. Dotera, "Voronoi space division of a polymer: Topological effects, free volume, and surface end segregation," Journal of Chemical Physics, vol. 120, pp. 496-505, Jan 1 2004.
[57] D. Srolovitz, K. Maeda, V. Vitek, and T. Egami, "Structural Defects in Amorphous Solids Statistical-Analysis of a Computer-Model," Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, vol. 44, pp. 847-866, 1981.
[58] N. Miyazaki and Y. Shiozaki, "Calculation of mechanical properties of solids using molecular dynamics method," Jsme International Journal Series a-Mechanics and Material Engineering, vol. 39, pp. 606-612, Oct 1996.
[59] H. Rafii-Tabar, "Computational modelling of thermo-mechanical and transport properties of carbon nanotubes (vol 390, pg 235, 2004)," Physics Reports-Review Section of Physics Letters, vol. 394, pp. 357-357, May 2004.
[60] A. G. Worthing, "Atomic Heats of Tungsten and of Carbon at Incandescent Temperatures," Physical Review, vol. 12, pp. 199-225, 09/01/ 1918.
[61] K.-P. Huber and G. Herzberg, Constants of diatomic molecules: Springer, 1979.
[62] S. M. Hasheminejad and B. Gheshlaghi, "Dissipative surface stress effects on free vibrations of nanowires," Applied Physics Letters, vol. 97, pp. -, 2010.
[63] M. Imboden, P. Mohanty, A. Gaidarzhy, J. Rankin, and B. W. Sheldon, "Scaling of dissipation in megahertz-range micromechanical diamond oscillators," Applied Physics Letters, vol. 90, pp. -, 2007.
[64] P. Villain, P. Beauchamp, K. F. Badawi, P. Goudeau, and P. O. Renault, "Atomistic calculation of size effects on elastic coefficients in nanometre-sized tungsten layers and wires," Scripta Materialia, vol. 50, pp. 1247-1251, 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code