Responsive image
博碩士論文 etd-0717116-134126 詳細資訊
Title page for etd-0717116-134126
論文名稱
Title
南中國海非線性內波在東沙斜坡的淺化及變形
The shoaling and deformation of nonlinear internal waves near Dongsha Atoll in the northern South China Sea
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
120
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-08-15
繳交日期
Date of Submission
2016-08-18
關鍵字
Keywords
內波、淺化、底床斜坡、變形、紊流混合、南海、東沙環礁
South China Sea, Dongsha Atoll, turbulent mixing, deformation, shoaling, internal waves, bottom slope
統計
Statistics
本論文已被瀏覽 5801 次,被下載 28
The thesis/dissertation has been browsed 5801 times, has been downloaded 28 times.
中文摘要
南海內波起源於呂宋海峽,因潮流受蘭嶼海脊及恆春海脊的作用,產生內潮。內潮向西傳播進入南海,受非線性作用及海水分層強度的變化等之影響,波形變陡,逐漸演化成非線性內波(內孤立波)。當非線性內波傳播到東沙環礁東側大陸斜坡時,受淺化效應波形開始轉變。本研究以現場觀測資料,解析東沙海域大陸斜坡上,非線性內波淺化過程及波形變形的機制,觀測資料主要由三個海研三號航次收集,包含2010年8月的1組溫度計串及海流錨碇,及2008年5月的5組溫度計串錨碇,及2007年4月的紊流觀測。
在東沙海域,深水區非線性內波觀測到以下沉型為主,振幅介於30–110公尺,相位速度約1 m s-1向淺水傳播,流場在內波界面上方向西,界面下方流場向東。從東沙斜坡上5組溫度計串觀測,內波從水深285公尺至100公尺,由原本對稱的波形,淺化過程中波形前端逐漸拉長但後端維持原本波形,當傳播至更淺的測站時,波形後端形成上舉型波形。波形變形的機制的研究,統計分析5組溫度計串觀測資料中挑選的78個內波波形,在兩層流體系統假設下,發現內波波形轉變過程主要受內波振幅大小及下層厚度之關係控制。內波波形轉變的臨界條件為,內波振幅與下層厚度比值約0.66±0.2。當內波振幅小於0.45倍的下層厚度時,內波將維持下沉型波形繼續向淺水傳播。當振幅大於0.83倍下層厚度時,形成冷水抬升的上舉型內波。從東沙環礁周邊紊流觀測結果顯示,下沉型非線性內波在其波谷及波形後緣引發水體混合,其渦流動能消散率約10-6 Wkg-1–10-5 Wkg-1,與東沙海域背景值相比之下,非線性內波能增強水體混合約100–1000倍,與本海域相關研究相符。
Abstract
Large amplitude nonlinear internal waves have been frequently observed in the northern South China Sea. These waves are originated from internal tide generated by barotropic tidal currents over the two submarine ridges in Luzon strait, propagate westward across the basin, shoal and dissipate at the shallow continental shelves. This study is focus on the deformation and shoaling of large-amplitude nonlinear internal wave near the Dongsha Atoll based on field observations. Field data were collected mainly from three R/V Ocean Research III cruises, including an intensive array of T-string moorings and a bottom mounted current meter (May, 2008 and August, 2010) and microstructure profiling observations (April, 2007).
For the wave shoaling study, in deeper water depth, depression waves were observed with the amplitude in range of 30 m–110 m. The vertical structure of flow pattern shows an anti-clockwise rotation, ie, flow to the west in the upper and to the east in the lower layer of an internal soliton wave. Shoaling of large-amplitude nonlinear internal waves over a steep slope (~3°) from 285 m to 100 m on the east side of Dongsha Atoll in the northern South China Sea was observed by five T-string moorings. In deeper water depth, the waveform of depression wave was symmetry. Whiling shoaling, the front edge of depression wave was elongated, the rear edge of the wave remained its shape. As the wave propagated further shallow water, the bottom-trapped elevation wave formed. The phase speed was estimated 0.4 ms-1 - 1 ms-1. For the shoaling mechanism study, 78 nonlinear internal waves with clear waveforms were selected among the 5 T-string moorings data. Their wave amplitude (A), mixed layer depth (H1) and water depth (Ht) were identified. Statistics showed that the wave deformation was related to the ratio between wave amplitude and lower layer thickness. The critical conditions of wave transiting from depression to elevation occurred while A/(Ht-H1) is around 0.6±0.2. The depression wave would remain its shape propagating toward shallow water as A/(Ht-H1) is less than 0.45. When A/(Ht-H1) is greater than 0.83, all waves are in the form of bottom trapped elevation wave.
Turbulence observations near the Dongsha showed that the enhanced turbulence kinetic energy dissipation rates were found near the trough and in the wake of depression wave with the levels of 10-6 Wkg-1–10-5 Wkg-1. The dissipation rates induced by depression internal wave were about 100–1000 times higher than background values near the Dongsha Atoll.
目次 Table of Contents
目錄
謝誌 i
摘要 ii
Abstract iii
目錄 v
圖目錄 vii
表目錄 xii
第一章、緒論 1
1.1 前言 1
1.2 前人研究 6
1.2.1 內波觀測研究 6
1.2.2 內波數值模擬研究 14
1.3 研究動機與目的 17
第二章、觀測與分析及結果 19
2.1 觀測方法 20
2.1.1 溫度計 20
2.1.2 都卜勒剖流儀 22
2.2 分析方法 23
2.2.1 溫度計校正 23
2.2.2 調和分析 23
2.2.3 KdV理論 27
2.3 結果 28
2.3.1 溫度觀測 28
2.3.2 海流觀測 29
第三章、東沙大振幅非線性內波在大陸斜坡上淺化過程 38
3.1 現場觀測 39
3.2 觀測結果 40
3.2.1 溫度觀測 40
3.2.2 內波波形淺化轉變 47
3.2.3 內波流場結構觀測 49
3.3 淺化特性 55
第四章、東沙大振幅非線性內波波形變形機制 56
4.1 現場觀測 58
4.2 觀測分析結果 61
4.2.1 溫度觀測 61
4.2.2 現場觀測資料之KdV理論應用 63
4.2.3 非線性內波淺化過程 67
4.2.4 非線性內波波形之轉變 72
4.3 變形機制 76
第五章、東沙環礁紊流觀測 77
5.1 紊流儀簡介 77
5.2 資料分析方法 80
5.3 紊流觀測結果 84
第六章、結論與建議 94
6.1 結論 94
6.2 建議 96
參考文獻 97
參考文獻 References
參考文獻
Aghsaee, P., Boegman, L., Lamb, K. G., 2010. Breaking of shoaling internal solitary waves. Journal of Fluid Mechanics 659, 289–317.
Alford, M. H., Lien, R.C., Simmons, H., Klymak, J., Ramp, S. R., Yang, Y. J., Tang, T. Y., Chang, M. H., 2010. Speed and evolution of nonlinear internal waves transiting the South China Sea. Journal of Physical Oceanography 40 (6), 1338–1355.
Alford, M. H., MacKinnon, J. A., Nash, J. D., Simmons, H., Pickering, A., Klymak, J. M., Pinkel, R., Sun, O., Rainville, L., Musgrave, R., Beitzel, T., Fu, K. H., Lu, C. W., 2011. Energy Flux and Dissipation in Luzon Strait: Two Tales of Two Ridges. Journal of Physical Oceanography 41, 2211–2222.
Alford, M. H., Peacock, T., MacKinnon, J. A., Nash, J. D., Buijsman M. C., Centuroni, L. R., Chao, S. Y., Chang, M. H., Farmer, D. M., Fringer O. B., Fu, K. H., Gallacher, P., Graber, H. C., Helfrich, K. R., Jachec, S., Jackson, C. R., Klymak, J. M., Ko, D. S., Jan, S., Johnston, T. M. S., Legg, S., Lee, I. H., Lien, R. C., Mercier, M. J., Moum, J. N., Musgrave, R., Park, J. H., Pickering, A. I., Pinkel, R., Rainville, L., Ramp, S. R., Rudnick, D. L., Sarkar, S., Scotti, A., Simmons, H. L., St. Laurent, L. C., Venayagamoorthy, K., Wang, Y. H., Wang, J., Yang, Y. J., Paluszkiewicz, T., Tang, T. Y., 2015. The formation and fate of internal waves in the South China Sea. Nature 521 (7550), 65–69.
Apel, J. R., Ostrovsky, L. A., Stepanyants, Y. A., Lynch, J. F., 2007. Internal solitons in the ocean and their effect on underwater sound. Journal of the Acoustical Society of America 121 (2), 695–722.
Baker, A. C., Glynn, P.W., Riegl, B., 2008. Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook, Estuarine, Coastal and Shelf Science 80, 1–37, doi:10.1016/j.ecss.2008.09.003.
Boegman, L., Ivey, G. N., 2009. Flow separation and resuspension beneath shoaling nonlinear internal waves. Journal of Geophysical Research 114, C02018, doi: 10.1029/2007JC004411.
Bogucki, D. J., Redekopp, L. G., Barth, J., 2005. Internal solitary waves in the coastal mixing and optics 1996 experiment: multimodal structures and resuspension. Journal of Geophysical Research 110, C02024, doi:10.1029/ 2003JC002253.
Bole, J. B., Ebbesmeyer, J. J., Romea, R. D., 1994. Soliton currents in South China Sea: measurements and theoretical modelling. Proceeding of 26th Annual Offshore Technology Conference, Houston, 367–375.
Bourgault, D., Blokhina, M.D., Mirshak, R., Kelley, D.E., 2007. Evolution of a shoaling internal solitary wavetrain. Geophysical Research Letter 34, L03601, doi:10.1029/2006GL028462.
Chang, M. H., Lien, R. C., Tang, T. Y., D’Asaro, E. A., Yang, Y. J., 2006. Energy flux of nonlinear internal waves in northern South China Sea. Geophysical Research Letter 33, L03607, doi:10.1029/2004GL022012.
Chao, S. Y., Shaw, P. T., Hsu, M. K., Yang, Y. J., 2006. Reflection and diffraction of internal solitary waves by a circular island. Journal of Oceanography 62(6), 811–823.
Chao, S. Y., Ko, D. S., Lien, R. C., Shaw, P. T., 2007. Assessing the west ridge of Luzon Strait as an internal wave mediator. Journal of Oceanography 63(6), 897–911.
Cheng, M. H., Hsu, J. R. C., Chen, C. Y., 2011. Laboratory experiments on waveform inversion of an internal solitary wave over a slope-shelf. Environmental Fluid Mechanics 11(4), 353-384.
Chen, Y. J., Ko, D. S., Shaw, P. T., 2013. The generation and propagation of internal solitary waves in the South China Sea. Journal of Geophysical Research: Oceans 118(12), 6578–6589.
Cullen, J. J., Stewart, E., Renger, E., 1983. Vertical motion of the thermocline, nitracline and chlorophyll maximum layers in relation to currents on the Southern California shelf. Journal of Marine Research 41, 239–262.
Duda, T. F., Lynch, J. F., Newhall, A. E., Wu, L., Chiu, C. S., 2004. Fluctuations of 400 Hz sound intensity in the 2001 ASIAEX South China Sea experiment. IEEE Journal of Oceanic Engineering 29 (4), 1264–1279.
Farmer, D., Li, Q., Park, J. H., 2009. Internal wave observations in the South China Sea: The role of rotation and non‐linearity Atmosphere -Ocean 47(4), 267–280.
Fu, K. H., Wang, Y. H., St. Laurent, L. S., Simmons, H., Wang, D. P., 2012. Shoaling of large-amplitude nonlinear internal waves at Dongsha Atoll in the northern South China Sea. Continential Shelf Research 37(C), 1–7.
Fu, K. H., Wang, Y. H., Lee, C. P., Lee, I. H., 2016. The Deformation of Shoaling Internal Waves Observed at the Dongsha Atoll in the Northern South China Sea. Coastal Engineering Journal 58(1), 1650001-1650017. DOI: 10.1142/S0578563416500017.
Grimshaw, R., Pelinovsky, E., Talipova, T., Kurkin, A., 2004. Simulation of the transformation of internal solitary waves on oceanic shelves. Journal of Physical Oceanography 34(12), 2774–2791.
Grimshaw, R., Pelinovsky, E., Talipova, T., Kurkina, O., 2010. Internal solitary waves: propagation, deformation and disintegration. Nonlinear Processes in Geophysics 17(6), 633–649.
Guo, C., Vlasenko, V., Alpers, W., Stashchuk, N., Chen, X., 2012. Evidence of short internal waves trailing strong internal solitary waves in the northern South China Sea from synthetic aperture radar observations. Remote Sensing of Environment 124(C), 542–550.
Helfrich, K. R., Melville, W. K., 1986. On long nonlinear internal waves over slope-shelf topography. Journal of Fluid Mechanics 167, 285–308.
Helfrich, K. R., Grimshaw, R., 2008. Nonlinear Disintegration of the Internal Tide. Journal of Physical Oceanography 38(3), 686–701.
Holliday, D., Mcintyre, M. E., 1981. On potential energy density in an incompressible, stratified fluid, Journal of Physical Oceanography 107, 221–225.
Hsu, M. K., Liu, A. K., 2000. Nonlinear internal waves in the South China Sea, Canadian Journal of Remote Sensing 26, 72–81.
Kahru, M., 1983. Phytoplankton patchiness generated by long internal waves: a model. Marine Ecology Progress Series 10,111–117.
Klymak, J. M., Pinkel, R., Liu, C. T., Liu, A. K., David, L., 2006. Prototypical solitons in the South China Sea. Geophysical Research Letters 33, L11607, doi:10.1029/ 2006GL025932.
Lee, I. H., Wang, Y. H., Yang, Y., Wang, D. P., 2012. Temporal variability of internal tides in the northeast South China Sea. Journal of Geophysical Research 117, C02013.
Leichter, J. J., Deane, G. B., Stokes, M. D., 2005. Spatial and temporal variability of internal wave forcing on a coral reef, Journal of Physical Oceanography 35, 1945–1962, doi: 10.1175/JPO2808.1.
Leichter, J. J., Stokes, M. D., Hench, J. L., Witting, J., Washburn, L., 2012. The island-scale internal wave climate of Moorea, French Polynesia. Journal of Geophysical Research 117, C06008, doi: 10.1029/2012jc007949.
Li, Q., Farmer, D. M., 2011. The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea. Journal of Physical Oceanography 41(7), 1345–1363.
Lien, R. C., Tang, T. Y., Chang, M. H., D’Asaro, E. A., 2005. Energy of nonlinear internal waves in the South China Sea. Geophysical Research Letters 32(5), L05615, doi:10.1029/2004GL022012.
Lien, R. C., D’Asaro, E. A., Henyey, F., Chang, M. H., Tang, T. Y., Yang, Y. J., 2012. Trapped core formation within a shoaling nonlinear internal wave. Journal of Physical Oceanography 42(4), 511–525.
Lien, R. C., Henyey, F., Ma, B., Yang, Y. J., 2014. Large-amplitude internal solitary waves observed in the Northern South China Sea: Properties and energetics. Journal of Physical Oceanography 44(4), 1095–1115.
Liu, A. K., Chang, Y. S., Hsu, M. K., Liang, N. K., 1998. Evolution of nonlinear internal waves in the East and South China Sea. Journal of Geophysical Research 103, C4, 7995–8008.
Lueck, R. G., Wolk, F., Yamazaki, H., 2002. Oceanic velocity microstructure measurement in the 20th century. Journal of Oceanography 58(1), 153–174.
Lynett, P. J., Liu, P. L. F., 2002. A two-dimensional, depth-integrated model for internal wave propagation over variable bathymetry. Wave Motion 36(3), 221–240.
Maderich, V., Talipova, T., Grimshaw, R., Terletska, K., Brovchenko, I., Pelinovsky, E., Choi, B. H., 2010. Interaction of a large amplitude interfacial solitary wave of depression with a bottom step. Physical Fluids 22(7), 076602.
Moore, S. E., Lien, R. C., 2007. Pilot whales follow internal solitary waves in the South China Sea. Marine Mammal Science 23(1), 193–196.
Moum, J. N., Klymak, J. M., Nash, J. D., Perlin, A., Smyth, W. D., 2007. Energy transport by nonlinear internal waves. Journal of Physical Oceanography 37, 1968–1988.
Orr, M. H., Mignerey, P. C., 2003. Nonlinear internal waves in the South China Sea: Observation of the conversion of depression internal waves to elevation internal waves. Journal of Geophysical Research 108, 3064, doi:10.1029/2001JC001163.
Pan, X., Wong, G. T. F., Shiah, F. K., Ho, T. Y., 2012. Enhancement of biological productivity by internal waves: observations in the summertime in the northern South China Sea. Journal of Oceanography, doi: 10.1007/s10872-012-0107-y.
Putnam, H. M., Edmunds P. J., Fan T. Y., 2010. Effect of a fluctuating thermal regime on adult reef corals and their larvae. Invertebrate Biology 129, 199–209.
Ramp, S. R., Tang, T. Y., Duda, T. F., Lynch, J. F., Liu, A. K., Chiu, C. S., Bahr, F. L., Kim, H. R., Yang, Y. J., 2004. Internal solitons in the Northeastern South China Sea Part I: source and deep water propagation. IEEE Journal of Oceanic Engineering 29, 1157–1181.
Ramp, S. R., Yang , Y. J., Bahr, F. L., 2010. Characterizing the nonlinear internal wave climate in the northeastern South China Sea. Nonlinear Processes in Geophysics 17, 481–498.
Scotti, A., Pineda, J., 2004. Observation of very large and steep internal waves of elevation near the Massachusetts coast. Geophysical Research Letters 31, L22307, doi:10.1029/2004GL021052.
Shaw, P. T., Ko, D. S., Chao, S. Y., 2009. Generation of internal solitary waves in the northern South China Sea. Journal of Geophysical Research 114, C02019, doi:10:1029/2008JC004797.
Shishkina, O. D., Sveen, J. K., Grue, J., 2013. Transformation of internal solitary waves at the deep and shallow shelf: satellite observations and laboratory experiment. Nonlinear Processes Geophysics 20(5), 743–757.
Shroyer, E. L., Moum, J. N., Nash, J. D., 2009. Observations of polarity reversal in shoaling nonlinear internal waves. Journal of Physical Oceanography 39, 691–701.
Shroyer, E. L., Moum, J. N., Nash, J. D., 2010. Energy transformations and dissipation of nonlinear internal waves over New Jersey’s continental shelf. Nonlinear Processes in Geophysics 17, 345–360.
da Slive, J. C. B., New, A. L., Srokosz, M., Smyth, T. J., 2002. On the observability of internal tidal waves in remotely-sensed ocean colour data. Geophysical Research Letters 29(12), 10–11.
Small, J., 2001. A nonlinear model of the shoaling and refraction of interfacial solitary waves in the ocean. Part I: development of the model and investigations of the shoaling effect. Journal of Physical Oceanography 31(11), 3163-3183.
Stanton, T., Ostrovsky, L., 1998. Observations of highly nonlinear internal solitons over the continental shelf. Geophysical Research Letters 25(14), 2695-2698.
St. Laurent, L., 2008. Turbulent dissipation on the margins of the South China Sea. Geophysical Research Letters 35, doi:10.1029/2008GL035520.
St. Laurent, L., Simmons, H., Tang, T. Y., Wang, Y. H., 2011. Turbulent Properties of Internal Waves in the South China Sea. Oceanography 24(4), 78–87.
Su, F. C., Ho, C. R., Zheng, Q. Kuo, N. J., 2008. Estimating amplitudes of internal waves using satellite ocean colour imagery of the South China Sea. International Journal of Remote Sensing 29(21), 6373–6380.
Vallis, G. K., 2006. Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745.
Vlasenko, V.,Stashchuk N., and Hutter K., 2002. Water exchange in fjords induced by tidally generated internal lee waves. Dynamics of Atmospheres and Oceans 35, 63–89.
Vlasenko, V., Stashchuk, N., 2007. Three-dimensional shoaling of large-amplitude internal waves. Journal of Geophysical Research 112, C11018. doi:10.1029/2007JC004107.
Vlasenko, V., Stashchuk, N., Guo, C., Chen, X., 2010. Multimodal structure of baroclinic tides in the South China Sea. Nonlinear Processes in Geophysics 17(5), 529–543.
Vlasenko, V., Guo, C., Stashchuk, N., 2012. On the mechanism of A-type and B-type internal solitary wave generation in the northern South China Sea. Deep-Sea Research I 69, 100–112.
Wang, Y. H., Dai, C. F., Chen, Y. Y., 2007. Physical and ecological processes of internal waves on an isolated reef ecosystem in the South China Sea. Geophysical Research Letter 34, doi:10.1029/2007GL030658.
Wang, Y. H., 2016. Phytoplankton transport to coral reefs by internal solitons in the northern South China Sea. Coral Reefs, doi: 10.1007/s00338-016-1456-6.
Warn-Varnas, A., Hawkins, J., Lamb, K. G., Piacsek, S., Chin-Bing, S., King, D., Burgos, G., 2010. Solitary wave generation dynamics at Luzon Strait. Ocean Modelling 31, 9–27.
Wolanski, E., Colin, P., Naithani, J., Deleersnijder, E., Golbuu, Y., 2004. Large amplitude, leaky, island-generated, internal waves around Palau, Micronesia. Estuarine, Coastal and Shelf Science 60, 705–716.
Wolk, F., amazaki, H. Y., Seuront, L., Lueck, R. G.,2002. A new free-fall profiler for measuring biophysical microstructure. Journal of Atmospheric and Oceanic Technology 19(5), 780–793.
Zhao, Z., Alford, M. H., 2006. Source and propagation of internal solitary waves in the northeastern South China Sea. Journal of Geophysical Research 111, C11012.
Zhao, Z., Klemas, V., Zheng Q., Yan, X. H., 2004. Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophysical Research Letters 31, L06302, doi:10.1029/2003GL019077.
Zhao, Y., Liu, A. K., and Hsu, M. K., 2008. Internal wave refraction observed from sequential satellite images. International Journal of Remote Sensing 29, 6381–6390.
Zhang, Z., Fringer, O. B., Ramp, S.R., 2011.Three-dimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea. Journal of Geophysical Research 116, C05022. doi:10.1029/2010JC006424.
Zheng, Q., Susanto, R. D., Ho, C. R., Song, Y. T., Xu, Q., 2007. Statistical and dynamical analyses of generation mechanisms of solitary internal waves in the northern South China Sea. Journal of Geophysical Research: Oceans 112, C03021, doi:10.1029/2006JC003551.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code