Responsive image
博碩士論文 etd-0717117-002205 詳細資訊
Title page for etd-0717117-002205
論文名稱
Title
蜘蛛絲應用於能量擷取器之研究
A Study of Spider Silk for Energy Harvester
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-19
繳交日期
Date of Submission
2017-08-28
關鍵字
Keywords
蜘蛛絲、能量擷取系統、壓電效應、天然蛋白纖維
Spider silk, Nature protein fiber, Piezoelectricity, Energy havester
統計
Statistics
本論文已被瀏覽 5710 次,被下載 0
The thesis/dissertation has been browsed 5710 times, has been downloaded 0 times.
中文摘要
本研究主要目的在以台灣當地人面蜘蛛(Nephila pilipes)所產的曳絲纖維(dragline)證實蛛絲纖維之壓電特性。首先以電子顯微鏡觀察蜘蛛纖維的線徑和表面形貌,說明了其光滑的特性;再透過微拉伸試驗和奈米壓痕測試調查蜘蛛絲纖維的機械性質,實驗結果測得蜘蛛纖維的彈性模數介於5-7 GPa,破壞強度介於510 ~ 850 MPa,拉伸率介於20 ~ 25 %,顯示蜘蛛絲擁有良好的機械強度和延展性。電性測試則使用4 Hz固定頻率拍打器施予蜘蛛纖維固定的形變,電壓訊號的輸出證實了蜘蛛纖維的正壓電效應;逆壓電測試證實當給予外加的交流電場會導致纖維的跳動,符合逆壓電效應的特徵也證實了蜘蛛絲纖維具有壓電特性。接著對蜘蛛纖維加上定壓電場進行再極化的實驗,電性測試後發現輸出訊號有明顯提升的現象,電壓訊號從13.4 mV 提升至40.7 mV,電流訊號從70.6 nA 提升至105 nA,判斷是因為輸入高壓電場使材料內部結構更具方向性之故。阻抗匹配是當負載電阻跟壓電纖維的內阻相等時,可獲得最大之輸出功率。未極化蜘蛛絲能量擷取裝置在並聯4.7 MΩ 的電阻時可產生最大的輸出功率24.93 pW;極化蜘蛛絲能量擷取裝置在並聯8.2 MΩ 的電阻時可產生最大的輸出功率59.5 pW。以FTIR測試分析再極化與未極化的蜘蛛纖維,發現蜘蛛纖維極化後的二級結構其α-螺旋和β-摺版含量會提升,說明了加入電場極化確實會使蜘蛛絲纖維材料更具方向性。本研究提出了天然蜘蛛纖維具有壓電特性的想法,並經由一系列實驗觀察證實蜘蛛纖維確具有壓電效應,期待能對蜘蛛纖維發展更多新的應用。
Abstract
In this study, the piezoelectric properties of spider silk (dragline) produced by Taiwan local spider (Nephila pilipes) was confirmed. Firstly, electron microscopy was used to observe the surface morphology and diameter of spider silk, in order to describing its smooth characteristic. Then the mechanical properties of spider silk were investigated by micro-tensile test and nano-indentation test. The results showed that the elastic modulus of spider silk was between 5 and 7 GPa, the strength ranged from 510 to 850 MPa, and the extensibility was between 20-25%. It can be concluded that spider silk has good mechanical strength and ductility. The positive piezoelectric effect test was performed by using a 4 Hz beater to apply a fixed deformation on the spider silk, and the output of the voltage signal confirmed the positive piezoelectric effect of the spider silk. The converse piezoelectric test confirmed that when an alternating electric field was given, it can cause the silk to be deformed which proved that the spider silk has piezoelectric properties. By polarizing the spider’s silk, the output values of peak voltage and peak current showed significantly improved. The peak voltage value rose up from 13.4 mV to 46.7 mV, and the peak current value rose up from 70.6 nA to 105 nA. These results were caused from the high voltage electric field made the internal structure of the material more directional. Impedance matching test was to obtain the maximum output power when the load resistance equals to the internal resistance. The energy harvester made from non-polarized spider silk can produce a maximum output power of 24.93 pW when it was in parallel with 4.7 MΩ resistor, yet the energy harvester made from polarized spider silk can produce a maximum output power of 59.5 pW when it was in parallel with 8.2 MΩ resistor. Fourier Transform Infrared Spectroscopy (FTIR) test indicated that the additional electric field does make spider’s silk more directional in structure. By analyzing polarized and non-polarized spider silk, it can be found that the secondary structure of α-helix and β-sheet in spider silk were increased after polarized.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1前言 1
1-2研究背景與動機 1
1-3研究目的 2
1-4研究架構 3
第二章 文獻回顧 4
2-1 壓電效應 4
2-1-2 逆壓電效應 5
2-1-3 電場極化過程 6
2-1-4 壓電纖維操作模式 6
2-2 蛋白質 7
2-2-1 胺基酸 7
2-2-2 蛋白質結構 11
2-2-3 氫鍵 11
2-3 蜘蛛絲纖維 13
2-3-1 蜘蛛絲成份 14
2-3-2 蜘蛛吐絲機制 16
2-3-3 蜘蛛絲纖維應用 18
第三章 實驗方法與設備 19
3-1 蜘蛛取絲過程 20
3-2 材料特性量測設備 23
3-2-1 掃描式電子顯微鏡(SEM) 23
3-2-2 鍍金機 25
3-2-3 微型機性測試機 27
3-2-4 奈米壓痕測試機 29
3-2-5 傅利葉紅外線光譜儀(FTIR) 32
3-3 電性量測設備 35
3-3-1 電壓量測儀 35
3-3-2 微電流量測儀 35
3-3-3 應變規 36
3-3-4 橋接模組 38
3-3-5 USB 資料擷取模組(DAQ) 40
3-3-6 雷射切割加工機 41
3-3-7 電性量測設備架設 42
3-4 逆壓電測試設備 45
3-5 蜘蛛絲再極化 48
第四章 結果討論 49
4-1 蜘蛛絲表面形貌(SEM) 49
4-2 蜘蛛絲機械強度測試 50
4-2-1 蜘蛛絲微拉伸試驗(Micro-tensile test) 51
4-2-2 蜘蛛絲奈米壓痕測試(Nano-indenter test) 53
4-3 蜘蛛絲電性量測 55
4-4 蜘蛛絲逆壓電效應測試 59
4-5 蜘蛛絲以傅利葉轉換紅外線光譜量測(FTIR) 61
第五章 結論 65
5-1 結論 65
5-2 未來展望 66
文獻回顧 67
參考文獻 References
1. Dutoit, N.E., B.L. Wardle, and S.-G. Kim, Design Considerations for MEMS-scale Piezoelectric Mechanical Vibration Energy Harvesters. Integrated Ferroelectrics, 2005. 71(1): p. 121-160.
2. Ballato, A. Piezoelectricity: history and new thrusts. in 1996 IEEE Ultrasonics Symposium. Proceedings. 1996.
3. https://en.wikipedia.org/wiki/Amino_acid.
4. 王自豪, 林誠謙, 李弘謙, 談蛋白質折疊與氨基酸序列. 物理雙月刊, 2002. 24(2): p. 320-327。
5. Garrett, R.H. and C.M. Grisham, Biochemistry. Biochemistry and Molecular Biology Education, 1995. 23(2): p. 108.
6. Pauling, L. and R.B. Corey, Configurations of Polypeptide Chains With Favored Orientations Around Single Bonds: Two New Pleated Sheets. Proceedings of the National Academy of Sciences of the United States of America, 1951. 37(11): p. 729-740.
7. Kim, J., et al., Surface-Grafting of Polyglutamate on Si Wafer Using Micro Contact Printing. Molecular Crystals and Liquid Crystals, 2007. 464(1): p. 211/[793]-216/[798].
8. 陳啟仁,利用不同極性衍生物調控聚胜肽之二級結構,國立中山大學材料與光電科學系碩士論文,2011。
9. http://www.genome.gov/Pages/Hyperion//DIR/VIP/Glossary/Illustration/amino_acid.shtml
10. Lecommandoux, S., Bulk Self-Assembly of Linear Hybrid Polypeptide-Based Diblock and Triblock Copolymers, in Complex Macromolecular Architectures. 2011, John Wiley & Sons (Asia) Pte Ltd. p. 623-645.
11. Schlaad, H., Solution Properties of Polypeptide-based Copolymers, in Peptide Hybrid Polymers, H.-A. Klok and H. Schlaad, Editors. 2006, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 53-73.
12. Winkler, S. and D.L. Kaplan, Molecular biology of spider silk. Reviews in Molecular Biotechnology, 2000. 74(2): p. 85-93.
13. Vollrath, F., Strength and structure of spiders’ silks. Reviews in Molecular Biotechnology, 2000. 74(2): p. 67-83.
14. Lucas, F., J.T.B. Shaw, and S.G. Smith, Comparative studies of fibroins. Journal of Molecular Biology, 1960. 2(6): p. 339-349.
15. Gerritsen, V.B., The tiptoe of an airbus. Protein Spotlight, 2000. 24: p. 1-2.
16. Kaplan, D., et al., Silk polymers: material science and biotechnology. Vol. 544. 1993.
17. Fraser, R., Conformation in Fibrous Proteins and Related Synthetic Polypeptides. 1973.
18. Cunniff, P.M., et al., Mechanical and thermal properties of dragline silk from the spider Nephila clavipes. Polymers for Advanced Technologies, 1994. 5(8): p. 401-410.
19. Cunniff, P. M., Fossey, S. A., Auerbach, M. A., Song, J. W., In: Kaplan, D. L., Adams, W. W., Farmer, B., Viney, C. (Eds), Silk Polymer: Materials Science and Biotechnology, American Chemical Society Symposium Series, Vol. 554, 1994b, pp. 234-251.
20. Zhang, Y. Q., Acta. Biochem. Biochem. Biophys. Sin. Vol. 31(2), 1998, pp. 119-123.
21. Agnarsson, I., M. Kuntner, and T.A. Blackledge, Bioprospecting Finds the Toughest Biological Material: Extraordinary Silk from a Giant Riverine Orb Spider. PLoS ONE, 2010. 5(9): p. e11234.
22. Zschokke, S., The influence of the auxiliary spiral on the capture spiral in Araneus diadematus Clerck (Araneidae). Bulletin of the British Arachnological Society, 1993. 9: p. 169-173.
23. Gosline, J.M., M.W. Denny, and M.E. DeMont, Spider silk as rubber. Nature, 1984. 309(5968): p. 551-552.
24. Hu, X.Y., et al., Analysis of aqueous glue coating proteins on the silk fibers of the cob weaver, Latrodectus hesperus. Biochemistry, 2007. 46(11): p. 3294-3303.
25. Hinman, M.B., J.A. Jones, and R.V. Lewis, Synthetic spider silk: a modular fiber. Trends in Biotechnology, 2000. 18(9): p. 374-379.
26. Spek, E.J., H.C. Wu, and N.R. Kallenbach, Journal of the America Chemical Society, 1997. 119: p. 5053-5054.
27. Kplan, D.L., Novel Materials from Biological Sourcers. New York: ACS press, 1991. 53: p. 1-53.
28. Xu, M. and R.V. Lewis, Structure of a protein superfiber: spider dragline silk. Proceedings of the National Academy of Sciences of the United States of America, 1990. 87(18): p. 7120-7124.
29. Huang, J., et al., Cloning, expression, and assembly of sericin-like protein. The Journal of Biological Chemistry, 2003. 278: p. 46117-46123.
30. Lewis, R.V., Spider Silk:  Ancient Ideas for New Biomaterials. Chemical Reviews, 2006. 106(9): p. 3762-3774.
31. Vollrath, F. and D. Porter, Spider silk as archetypal protein elastomer. Soft Matter, 2006. 2(5): p. 377-385.
32. Knight, D. and F. Vollrath, Hexagonal columnar liquid crystal in the cells secreting spider silk. Tissue and Cell, 1999. 31(6): p. 617-620.
33. Riekel, C., et al., Aspects of X-ray diffraction on single spider fibers. International Journal of Biological Macromolecules, 1999. 24(2): p. 179-186.
34. Vollrath, F. and D.P. Knight, Liquid crystalline spinning of spider silk. Nature, 2001. 410(6828): p. 541-548.
35. Scheibel, T., Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microbial Cell Factories, 2004. 3(1): p. 14.
36. Schacht, K. and T. Scheibel, Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications. Current Opinion in Biotechnology, 2014. 29: p. 62-69.
37. Domachuk, P., et al., Bio-microfluidics: Biomaterials and Biomimetic Designs. Advanced Materials, 2010. 22(2): p. 249-260.
38. Kim, D.-H., et al., Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater, 2010. 9(6): p. 511-517.
39. MacLeod, J. and F. Rosei, Photonic crystals: Sustainable sensors from silk. Nat Mater, 2013. 12(2): p. 98-100.
40. Zhou, L., et al., Naturally derived carbon nanofibers as sustainable electrocatalysts for microbial energy harvesting: A new application of spider silk. Applied Catalysis B: Environmental, 2016. 188: p. 31-38.
41. Agnarsson, I., C. Boutry, and T.A. Blackledge, Spider silk aging: initial improvement in a high performance material followed by slow degradation. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 2008. 309A(8): p. 494-504.
42. Swanson, B.O., et al., Spider Dragline Silk: Correlated and Mosaic Evolution in High-Performance Biological Materials. Evolution, 2006. 60(12): p. 2539-2551.
43. Asrar, J. and J.C. Hill, Biosynthetic processes for linear polymers. Journal of Applied Polymer Science, 2002. 83(3): p. 457-483.
44. 吳蕙均,近場電紡聚谷氨酸甲酯/聚偏氟乙烯複合壓電纖維特性分析,國立中山大學機械與機電工程學系碩士論文,2014。
45. Chen, X., et al., Conformation Transition in Silk Protein Films Monitored by Time-Resolved Fourier Transform Infrared Spectroscopy:  Effect of Potassium Ions on Nephila Spidroin Films. Biochemistry, 2002. 41(50): p. 14944-14950.
46. Jackson, M. and H.H. Mantsch, The Use and Misuse of FTIR Spectroscopy in the Determination of Protein Structure. Critical Reviews in Biochemistry and Molecular Biology, 1995. 30(2): p. 95-120.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.129.211.87
論文開放下載的時間是 校外不公開

Your IP address is 3.129.211.87
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code