Responsive image
博碩士論文 etd-0717117-151057 詳細資訊
Title page for etd-0717117-151057
論文名稱
Title
探討冷軋前集合組織對純鋁經冷軋及最終退火集合組織的影響
Evolution of Cube and rolling textures in a pure aluminum during cold-rolling and subsequent annealing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-18
繳交日期
Date of Submission
2017-08-17
關鍵字
Keywords
背向電子散射術、再結晶、集合組織、4N純鋁
texture, electron backscatter diffraction, recrystallization, 4N pure aluminum
統計
Statistics
本論文已被瀏覽 5722 次,被下載 70
The thesis/dissertation has been browsed 5722 times, has been downloaded 70 times.
中文摘要
本實驗使用之材料為99.99%純鋁,以兩種條件,分別為購置之鋁板 (以下簡稱B試片)與施予400°C高溫退火八小時(簡稱A8試片)。觀察結果得知,A8試片之再結晶集合組織,Cube方位強度明顯高於B試片,而B試片則具有高強度之軋延集合組織。因此取B與A8這兩種條件之試片做冷軋製程,軋延裁減量為70%,再施以最終退火處理,以探討冷軋前不同Cube集合組織含量在經退火後微結構與集合組織的發展情形。
以XRD繞射儀分析B試片與A8試片經冷軋70%後(以下簡稱B-CR70與A8-CR70)之集合組織,再計算結晶方位分佈函數(orientation distribution function, ODF)。觀察結果得知B-CR70試片表層與中心層主要由冷軋集合組織所組成,而A8-CR70試片表層也由冷軋集合組織所主導,在中心層則有出現Cube方位集合組織。對B-CR70與A8-CR70試片進行280°C退火一小時,發現B-CR70試片表層與中心層集合組織分佈無明顯變化,而A8-CR70試片表層與中心層均出現Cube方位集合組織。
由EBSD觀察B-CR70與A8-CR70試片冷軋後微結構經退火後的變化,發現Cube方位容易在Cube方位上成核生長,且容易受到周圍Brass、S與Cu方位影響其生長。在B-CR70試片與A8-CR70試片表層皆有發現晶界Y-junction的移動,使得試片表層之低角度晶界比例於經退火處理後上升。
B-CR70試片與A8-CR70試片在經過退火處理後,A8-CR70試片在較低溫度就已開始再結晶,隨著退火溫度的上升,A8-CR70試片之微硬度值與抗拉強度下降幅度也較B-CR70試片多。
Abstract
In this study, the evolution of Cube texture and rolling texture during cold rolling and subsequent annealing in a pure aluminum was investigated. The starting materials are aluminum plates with 99.99% purity, which were annealed at 400 ° C for 8 hours (referred as A8 sample) and blank treated (referred as B sample). These two samples were cold rolled subsequently to rolling reductions of 70%.
The intensity of Cube orientation was observed to be significantly higher in A8 sample than in the B sample from the results of macrotexture. The difference in Cube orientation between sample A8 and B is the key to the following cold rolling and recrystallization textures.
The orientation distribution functions (ODFs) of cold rolled specimens B and A8 (referred to as B-CR70 and A8-CR70) were obtained by X-ray diffraction (XRD). The results show that the surface layer and the central layer of B-CR70 samples are mainly composed of rolling texture without Cube orientation, while the surface of A8-CR70 sample was also dominated by rolling texture with Cube orientation in the center layer. The B-CR70 and A8-CR70 samples were thus annealed at 280 ° C for one hour. There is no obvious change to the surface and the central layer of the B-CR70 annealed specimen from the results of macrotexture. The Cube orientation appeared in both the surface and the center layer of the A8-CR70 annealed specimen.
The ex-situ electron backscatter diffraction (EBSD) experiments were carried out on the cold rolled specimens. The cold rolled specimens were marked and analyzed prior annealing. The same areas were then re-analyzed after annealing. It was found that the Cube orientation mostly nucleated in the Cube band, and it was affected by the growth of Brass, S and Cu in the surroundings deformed matrix of B-CR70 and A8-CR70 sample after annealing.
The evidence of the movement of Y-type triple junction of the grain boundaries was found on the surface layer of the B-CR70 sample and the A8-CR70 sample by comparing the analyzed area in both deformed and annealed states. Hence, the ratio of low-angle grain boundary after annealing was increased for both B-CR70 and A8-CR70 samples.
The recrystallization of A8-CR70 sample started at a relatively low annealing temperature comparing to B-CR70 sample. As the annealing temperature increased, both the micro hardness and UTS value of the A8-CR70 sample after annealing drops more drastically than the one of B-CR70 sample.
目次 Table of Contents
第一章 前言 1
第二章 文獻回顧 2
2.1軋延過程對微結構影響 2
2.2集合組織 2
2.3 FCC集合組織 3
2.3.1剪切帶 4
2.3.2冷軋前集合組織 5
2.4純度 6
2.5 冷軋量 7
2.6退火 8
2.6.1回復 8
2.6.2再結晶[18] 9
2.6.3影響再結晶因素 10
2.7 極圖(pole figure) 10
2.8 Euler space與結晶方位分佈函數(orientation distribution function, ODF) 11
2.9電子背向散射繞射(EBSD)原理 11
第三章 研究目的 12
第四章 實驗方法 13
4.1實驗材料 13
4.2退火處理 13
4.3 XRD極圖量測 13
4.4硬度分析 14
4.5拉伸試驗 14
4.6電子背向散射分析 15
第五章 實驗結果 16
5.1 冷軋前熱處理 16
XRD分析 16
EBSD分析 17
5.2微硬度與冷軋後退火軟化曲線 17
5.3機械性質 18
5.4 冷軋後巨觀集合組織 18
5.4.1 B-CR70試片實驗結果 18
5.4.2 A8-CR70試片實驗結果 19
5.5 冷軋與退火後之SEI形貌 19
5.6冷軋-退火ex-situ EBSD實驗結果 20
5.6.1 B-CR70試片實驗結果 20
5.6.2 A8-CR70試片實驗結果 21
第六章 討論 23
6.1冷軋前退火與未退火的影響 23
微硬度與機械性質 23
集合組織 23
6.2退火溫度與時間對微結構的影響 24
B試片 24
A8試片 24
Cube方位之演變 24
6.3退火後方位差角的演變 25
第七章 結論 26
參考文獻 27
表6-1 B-CR70試片再結晶比例(單位:%) 31
表6-2 A8-CR70試片再結晶比例 (單位:%) 31
表6-3 B-CR70試片表層區域各個退火條件方位差角 32
表6-4 B-CR70試片中心層區域各個退火條件方位差角 32
表6-5 A8-CR70 表層區域各個退火條件方位差角 33
表6-6 A8-CR70中心層區域各個退火條件方位差角 33
圖2-2 在變型態中不同形貌的cube bands (a)與(b)strain-localized cube bands (c)與(d)transition cube bands (e)在S方位基材的細長cube帶狀區域[4] 34
圖2-3 99.988%鋁片以360°C退火200秒微觀結構[16] 35
圖2-4 99.988%鋁片以360°C退火300秒微觀結構[16] 35
圖2-5 不同冷軋量下,降伏應力與退火溫度關係圖[12.13] 36
圖2-6 冷軋70% AA8079L鋁合金之EBSD地圖(a)退火溫度270°C 10min, 36
(b) 20min, (c) 30min, (d) 60min, (e) 180min[21] 36
圖2-7 冷軋70% AA8079L鋁合金之EBSD地圖(a)退火溫度300°C 1min, 37
(b) 3min, (c) 6min, (d) 15min, (e) 60min[21] 37
圖2-8 (a)起始微結構 (b) triple junctions 移動後的微結構[17] 37
圖2-9 (a)電子背向散射繞射與菊池線生成示意圖。 (b)由多組菊池線共同組成
之電子背像散射繞射示意圖[23] 38
圖3-1 沖杯成形之杯口(a)強烈的Cube集合組織,呈現與軋延方向呈0o/90o凸耳(b)混合軋延與Cube集合組織,顯示較少凸耳[24] 38
圖4-1 拉伸試片之幾何形狀 39
圖5-1 B試片 (a)表層與(b)中心層{111} pole figure 40
圖5-2 B試片 (a)表層與(b)中心層ODF圖 40
圖5-3 A2試片 (a)表層與(b)中心層{111} pole figure 41
圖5-4 A2試片 (a)表層與(b)中心層ODF圖 41
圖5-5 A5試片 (a)表層與(b)中心層{111} pole figure 42
圖5-6 A5試片 (a)表層與(b)中心層ODF圖 42
圖5-7 A8試片 (a)表層與(b)中心層{111} pole figure 43
圖5-8 A8試片 (a)表層與(b)中心層ODF圖 43
圖5-9 4N Al 退火溫度400°C表層的各個集合組織體積分率與退火時間關係圖 44
圖5-10 4N Al 退火溫度400°C中心層的各個集合組織體積分率與退火時間關係 44
圖5-11 B試片 TD面ND反極圖地圖 45
圖5-12 B試片 Texture component圖 45
圖5-13 A8試片TD面ND反極圖地圖 46
圖5-14 A8試片 Texture component圖 46
圖5-15 B試片冷軋70%微硬度與退火溫度關係圖 47
圖5-16 A8試片冷軋70%微硬度與退火溫度關係圖 47
圖5-17 B試片 冷軋70%試片在不同退火溫度退火一小時的拉伸曲線圖 48
圖5-18 A8試片冷軋70%試片在不同溫度退火一小時的拉伸曲線圖 48
圖5-19 B-CR70 (a)表層與(b)中心層{111} pole figure 49
圖5-20 B-CR70 (a)表層與(b)中心層ODF圖 49
圖5-21 B-CR70 退火280°C 1hr (a)表層與(b)中心層{111} pole figure 50
圖5-22 B-CR70 退火280°C 1hr (a)表層與(b)中心層ODF圖 50
圖5-23 A8-CR70 (a)表層與(b)中心層{111} pole figure 51
圖5-24 A8-CR70 (a)表層與(b)中心層ODF圖 51
圖5-25 A8-CR70 退火280°C 1hr (a)表層與(b)中心層{111} pole figure 52
圖5-26 A8-CR70退火280°C 1hr (a)表層與(b)中心層ODF圖 52
圖5-27 B-CR70試片之SEI圖 53
圖5-28 B-CR70試片260°C退火一小時之SEI圖 53
圖5-29 A8-CR70試片之SEI圖 54
圖5-30 A8-CR70試片260°C退火一小時之SEI圖 54
圖5-31 B-CR70試片表層 退火280°C 1hr (a)(b)Grain Boundary圖 55
圖5-32 B-CR70表層 退火280°C 1hr (a)(b) Texture component圖 56
圖5-33 B-CR70表層 退火280°C 2hr (a)(b) Texture component圖 57
圖5-34 B-CR70試片中心層 退火280°C 2hr (a)(b) Texture component圖 58
圖5-35 B-CR70試片表層 退火280°C 4hr (a)(b)TD面ND反極圖地圖 59
圖5-36 B-CR70試片表層 退火280°C 4hr (a)(b) Texture component圖 60
圖5-37 B-CR70試片表層 退火300°C 1hr (a)(b) Texture component圖 61
圖5-38 B-CR70試片中心層 退火300°C 1hr (a)(b)Texture component圖 62
圖5-39 A8-CR70試片表層 退火260°C 1hr(a)(b) Texture component圖 63
圖5-40 A8-CR70試片中心層 退火260°C 1hr (a)(b) Texture component圖 64
圖5-41 A8-CR70試片表層 退火260°C 2hr (a)(b)Texture component圖 65
圖5-42 A8-CR70試片中心層 退火260°C 2hr (a)(b) Texture component圖 66
圖5-43 A8-CR70試片表層 退火260°C 3hr (a)(b) Texture component圖 67
圖5-44 A8-CR70試片中心層 退火260°C 3hr (a)(b) Texture component圖 68
圖5-45 A8-CR70試片表層 退火260°C 6hr (a)(b) Texture component 圖 69
圖5-46 A8-CR70試片中心層 退火260°C 6hr (a)(b) Texture component圖 70
圖5-47 A8-CR70試片表層 退火280°C 0.5hr (a)(b) Texture component 圖 71
圖5-48 A8-CR70試片中心層 退火280°C 0.5hr (a)(b) Texture component圖 72
圖5-49 A8-CR70試片表層 退火280°C 1hr (a)(b) Texture component圖 73
圖5-50 A8-CR70試片中心層 退火280 °C 1hr (a)(b) Texture component圖 74
Appendix 75
圖A-1 B試片表層 測量與計算後之{111}、{200}、{220} pole figure 75
圖A-2 B試片表層phi2 =0-90° 之ODF圖 76
圖A-3 B試片中心層 測量與計算後之{111}、{200}、{220} pole figure 77
圖A-4 B試片中心層phi2 =0-90° 之ODF圖 78
圖A-5 A2試片表層 測量與計算後之{111}、{200}、{220} pole figure 79
圖A-6 A2試片表層phi2 =0-90°之ODF圖 80
圖A-7 A2試片中心層 測量與計算後之{111}、{200}、{220} pole figure 81
圖A-8 A2試片中心層phi2 =0-90°之ODF圖 82
圖A-9 A5試片表層 測量與計算後之{111}、{200}、{220} pole figure 83
圖A-10 A5試片表層phi2 =0-90°之ODF圖 84
圖A-11 A5試片中心層 測量與計算後之{111}、{200}、{220} pole figure 85
圖A-12 A5試片中心層phi2 =0-90°之ODF圖 86
圖A-13 A8試片表層 測量與計算後之{111}、{200}、{220} pole figure 87
圖A-14 A8試片表層 phi2 =0-90°之ODF圖 88
圖A-15 A8試片中心層 測量與計算後之{111}、{200}、{220} pole figure 89
圖A-16 A8試片中心層phi2 =0-90°之ODF圖 90
圖A-17 B-CR70試片表層 測量與計算後之{111}、{200}、{220} pole figure 91
圖A-18 B-CR70試片表層phi2 =0-90°之ODF圖 92
圖A-19 B-CR70試片中心層 測量與計算後之{111}、{200}、{220} pole figure 93
圖A-20 B-CR70試片中心層phi2 =0-90°之ODF圖 94
圖A-21 B-CR70試片表層經退火280°C 1hr 測量與計算後之{111}、{200}、{220} pole figure 95
圖A-22 B-CR70試片表層經退火280°C 1hr phi2 =0-90° ODF圖 96
圖A-23 B-CR70試片中心層經退火280°C 1hr 測量與計算後 {111}、{200}、{220} pole figure 97
圖A-24 B-CR70試片中心層經退火280°C 1hr phi2 =0-90°之ODF圖 98
圖A-25 A8-CR70試片表層 測量與計算後之{111}、{200}、{220} pole figure 99
圖A-26 A8-CR70試片表層phi2 =0-90°之ODF圖 100
圖A-27 A8-CR70試片中心層 測量與計算後之{111}、{200}、{220} pole figure 101
圖A-28 A8-CR70試片中心層phi2 =0-90°之ODF圖 102
圖A-29 A8-CR70試片表層經退火 280°C 1hr 測量與計算後之{111}、{200}、{220} pole figure 103
圖A-30 A8-CR70試片表層經退火 280°C 1hr phi2 =0-90°之ODF圖 104
圖A-31 A8-CR70試片中心層經退火280°C 1hr 測量與計算後之{111}、{200}、{220} pole figure 105
圖A-32 A8-CR70試片中心層經退火280°C 1hr phi2 =0-90°之ODF圖 106
參考文獻 References
[1] B. Bay, N. Hansen, and D. Kuhlmann-Wilsdorf, "Microstructural evolution in rolled aluminium," Materials Science and Engineering A (1992) 158, pp139-146.
[2] M. M. Miszczyk and H. Paul, "Cube texture formation during the early stages of recrystallization of Al-1%wt.Mn and AA1050 aluminium alloys," IOP Conference Series: Materials Science and Engineering (2015) 89, p012036.
[3] W. Wang, A.-L. Helbert, T. Baudin, F. Brisset, and R. Penelle, "Reinforcement of the Cube texture during recrystallization of a 1050 aluminum alloy partially recrystallized and 10% cold-rolled," Materials Characterization (2012) 64, pp1-7.
[4] A. Albou, S. Raveendra, P. Karajagikar, I. Samajdar, C. Maurice, and J. H. Driver, "Direct correlation of deformation microstructures and cube recrystallization nucleation in aluminium," Scripta Materialia (2010) 62, pp469-472.
[5] O. Engler, "An EBSD local texture study on the nucleation of recrystallization at shear bands in the alloy Al-3%Mg," Scripta Materialia (2001) 44, pp229-236.
[6] J. Hirsch, W. Mao, and K. Lucke, "Poceedings of the International Conference of the Aluminum Technology'86," The Institute of Metals (1986), pp303-309.
[7] W. Liu and J. Morris, "Texture evolution of polycrystalline AA 5182 aluminum alloy with an initial {001}< 110> texture during rolling," Scripta materialia (2002) 47, pp487-492.
[8] W. C. Liu, C. S. Man, and J. G. Morris, "Lattice rotation of the cube orientation to the β fiber during cold rolling of AA 5052 aluminum alloy," Scripta Materialia (2001) 45, pp807-814.
[9] W. C. Liu and J. G. Morris, "Effect of initial texture on the recrystallization texture of cold rolled AA 5182 aluminum alloy," Materials Science and Engineering: A(2005) 402, pp215-227.
[10] D. J. Jensen, N. Hansen, and F. J. Humphreys, "Texture development during recrystallization of aluminium containing large particles," Acta Metallurgica (1985) 33, pp2155-2162.
[11] O. Engler and M.-Y. Huh, "Evolution of the cube texture in high purity aluminum capacitor foils by continuous recrystallization and subsequent grain growth," Materials Science and Engineering: A (1999) 271, pp371-381.
[12] A. Oscarsson, H. Ekstrom, and W. Hutchinson, "Transition from discontinuous to continuous recrystallization in strip-cast aluminum alloys," Trans. Tech. Publication (1992), pp177-182.
[13] A. Oscarsson, W. Hutchinson, B. Nicol, H. Ekstrom, and P. Bate, "Microrientation distributions and the transition to continuous recrystallization in strip cast aluminum alloy," Materials Science Forum (1994) 157-162, pp1271-1276.
[14] T. Suzuki, K. Arai, M. Shiga, and Y. Nakamura, "Mössbauer effect of Al-Fe-Si intermetallic compounds," Metallurgical Transactions A (1985) 16, pp1937-1942.
[15] J.-H. Ryu and D. N. Lee, "The effect of precipitation on the evolution of recrystallization texture in AA8011 aluminum alloy sheet," Materials Science and Engineering A (2002) 336, pp225-232.
[16] W. C. Liu, T. Zhai, C. S. Man, and J. G. Morris, "Quantification of recrystallization texture evolution in cold rolled AA 5182 aluminum alloy," Scripta Materialia (2003) 49, pp539-545.
[17] O. V. Mishin, A. Godfrey, D. Juul Jensen, and N. Hansen, "Recovery and recrystallization in commercial purity aluminum cold rolled to an ultrahigh strain," Acta Materialia (2013) 61, pp5354-5364.
[18] F. J. Humphreys, "Recrystallization and Recovery," Materials Science and Technology (1991) 15, p371.
[19] R. D. Doherty, D. A. Hughes, F. J. Humphreys, J. J. Jonas, D. J. Jensen, M. E. Kassner, et al., "Current issues in recrystallization: a review," Materials Science and Engineering A (1997) 238, pp219-274.
[20] D. Ponge, M. Bredehöft, and G. Gottstein, "Dynamic recrystallization in high purity aluminum," Scripta Materialia (1997) 37, pp1769-1775.
[21] O. Sukhopar and G. Gottstein, "A Study of Cube Grain Nucleation in a Commercial Al Alloy during In Situ and Discontinuous (Ex Situ) Annealing Experiments," Materials Science Forum (2014) 794-796, pp1245-1250.
[22] J. Hirsch, "Texture Evolution during Rolling of Aluminum Alloys," in LIGHT METALS-WARRENDALE-PROCEEDINGS- (2008), p1071.
[23] V. Randle and O. Engler, Introduction to texture analysis: macrotexture, microtexture and orientation mapping: CRC press (2000).
[24] F. J. Humphreys and M. Hatherly, "Recrystallization and related annealing phenomena 2nd edition (2004).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code