Responsive image
博碩士論文 etd-0717117-235152 詳細資訊
Title page for etd-0717117-235152
論文名稱
Title
與WiFi共存之新型LTE調度探索方法
New LTE Scheduling Heuristics for Co-existence with WiFi
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
65
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-31
繳交日期
Date of Submission
2017-08-18
關鍵字
Keywords
未授權頻譜(Unlicensed Spectrum)、長期演進技術(Long Term Evolution, LTE)、佔空比模式(Duty Cycling Pattern, DC Pattern)、無線網路技術WiFi (Wireless Fidelity)、共存(Co-existence)
Wireless Fidelity (WiFi), Unlicensed Spectrum, Long Term Evolution(LTE), Co-existence, Duty Cycling Pattern (DC Pattern)
統計
Statistics
本論文已被瀏覽 5762 次,被下載 33
The thesis/dissertation has been browsed 5762 times, has been downloaded 33 times.
中文摘要
如何將長期演進技術(Long Term Evolution, LTE)使用在未授權頻譜(Unlicensed Spectrum)上,近來成為各方重視的議題之一,發展中的第五代行動通訊系統(5th generation wireless systems, 5G),也考慮了LTE在未授權頻譜上傳輸的相關規範訂定問題。
本論文會先概述LTE與建立於IEEE 802.11標準的無線網路技術WiFi (Wireless Fidelity)的相關傳輸協定,其中有LTE時頻傳輸資源介紹、IEEE 802.11標準規範介紹。還有LTE重要的技術,正交分頻多工技術(Orthogonal Frequency Division Multiplexing, OFDM)。然後本論文會導入LTE使用在原本已有WiFi的頻段上,提出一種新型LTE調度方式與WiFi共存(Co-existence)的測試平台來探討LTE與WiFi的共存特性與各項參數對其共存影響之分析。本論文主要提出的論點有:LTE調變和編碼方案(Modulation and Coding scheme, MCS)與其頻寬對共存的影響、LTE與WiFi傳輸時間比例分配的方法,稱為佔空比模式(Duty Cycling Pattern, DC Pattern)、功率控制對共存效能的影響。並且,在最後使用可靠的LTE線上監控軟體(a Reliable Online Watcher for LTE, OWL),來驗證此研究中對LTE與WiFi共存的傳輸模式之設定與探討LTE的傳輸特性。對本篇論文總體所提出的研究,稱之為新型LTE與WiFi共存之調度探索方法。
Abstract
How to use Long Term Evolution (LTE) on Unlicensed Spectrum has become one of the most important issues recently. And the fifth generation wireless communication system (5th generation wireless systems, 5G), also considered the relevant specifications for the unauthorized spectrum transmission of LTE.
This paper will first discuss transmission protocol of LTE and WiFi (a type of wireless transmission technology, also known as Wireless Fidelity) based on IEEE 802.11 standard. The discussion encompass LTE time-frequency transmission resource introduction, IEEE 802.11 standard specification introduction, and an important technique of LTE: Orthogonal Frequency Division Multiplexing (OFDM). Next, considering LTE operated on the bandwidth of Wifi, this paper introduces a new testing platform where LTE and WiFi coexist to analyze the characteristics and influences of related factors on the coexistence status. The main points of this thesis are the method of allocating the ratio of LTE and WiFi transmission time is called Duty Cycling Pattern (DC Pattern), and the effect of power control on coexistence efficiency. In the final section, we use of a Reliable Online Watcher for LTE (OWL) to verify the transmission mode settings of LTE and WiFi coexistence in this thesis and to explore the transmission characteristics of LTE. The overall research in this paper is called New LTE scheduling heuristics for co-existence with WiFi.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 ix
第一章 導論 1
1.1 前言 1
1.2 研究動機 1
1.3 論文架構 2
第二章 LTE重要技術與協定 3
2.1 LTE概述 3
2.2 正交分頻多工系統之基本架構 5
2.3 LTE基本時頻傳輸資源 9
第三章 WiFi協定 11
3.1 WiFi概述 11
3.2 IEEE 802.11標準 11
3.2.1 IEEE 802.11網路架構簡介 11
3.2.2 IEEE 802.11媒體存取控制 13
第四章 實驗平台架構 17
4.1 硬體介紹 17
4.2 軟體介紹 20
4.2.1 srsLTE軟體套件介紹 20
4.2.2 OWL軟體套件介紹 22
第五章 srsLTE與WiFi於免職照頻段上共存 23
5.2 共存環境介紹 24
5.3 佔空比模式 26
第六章 實驗結果與討論 28
6.1 srsLTE與WiFi共存實驗結果分析 28
6.1.1 LTE頻寬與MCS的影響 28
6.1.2 佔空比模式之影響 31
6.1.3 功率控制影響 33
6.2 OWL驗證分析 35
6.3 驗證結果之特性實驗 40
第七章 結論 43
參考文獻 44
中英對照表 47
全名縮寫對照表 53
參考文獻 References
[1] C. Chen, R. Ratasuk, and A. Ghosh, “Downlink Performance Analysis of LTE and WiFi Coexistence in Unlicensed Bands with a Simple Listen-Before-Talk Scheme,” in Proc. IEEE VTC(Spring), Glasgow, UK, May 2015.
[2] C. Cano, D. López-Pérez, H. Claussen, D. J. Leith, “Using LTE in unlicensed bands: Potential benefits and coexistence issues”, IEEE Commun. Mag., vol. 54, no. 12, pp. 116-123, Dec. 2016.
[3] D. Flore, “Chairman Summary,” 3GPP workshop on LTE in unlicensed
spectrum, June, 2014.
[4] S. Yun and L. Qiu, “Supporting WiFi and LTE co-existence,” in Proc. IEEE INFOCOM, Hong Kong, Apr. 2015.
[5] IEEE Std 802.11, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” ANSI/IEEE Std 802.11, 1999 Edition (Revised 2007).
[6] IEEE Std 802.15.4, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications for low-rate wireless personal area networks,” IEEE Std 802.15.4, 2003 Edition (Revised 2006).
[7] Qualcomm Technologies, Inc., “LTE in Unlicensed Spectrum: Harmonious Coexistence with Wi-Fi,” Whitepaper, June, 2014.
[8] T. Nihtila, et al, “System performance of LTE and IEEE 802.11 coexisting on a shared frequency band,” 2013 IEEE Wireless Communications and Networking Conference(WCNC), Apr. 2013.
[9] A. M. Cavalcante, E. Almeida, et al., “Performance evaluation of LTE and Wi-Fi coexistence in unlicensed bands,” in Proc. IEEE VTC (Spring), Dresden, Germany, June 2013.
[10] Yu-Wei Lin, Ray-Guang Cheng, and Ruki Harwahyu, “Study of WiFi and LTE Coexistence in The Unlicensed Spectrum,” Taipei, Taiwan, 2015.
[11] C. Caprettiy, F. Gringoliy, N. Facchiy, and P. Patras, “LTE/Wi-Fi Co-existence under Scrutiny: An Empirical Study,” Mar. 2016.
[12] N. Bui and J. Widmer, “OWL: a Reliable Online Watcher for LTE Control Channel Measurements,” in ACM All Things Cellular, Oct. 2016.
[13] L. J. Cimini, “Analysis and simulation of a mobile radio channel using orthogonal frequency division multiplexing,”IEEE Trans. Commun., vol. 33, no. 7, pp. 665-675, July 1985.
[14] W. Y. Zou and Y. Wu, “COFDM:an overview,” IEEE Trans. Broadcast., vol. 41, no. 1,pp. 1-8, Mar. 1995.
[15] Y. Wu and W. Y. Zou, “Orthogonal frequency division multiplexing:a multi-carrier modulation scheme,” IEEE Trans. Consum. Electron., vol. 41, no. 3, pp. 392-399, Aug. 1995.
[16] H. C. Wu, “Analysis and characterization of intercarrier and interblock interferences for wireless mobile OFDM systems,” IEEE Trans. Broadcast., vol. 52, no. 2, pp. 203-210, June 2006.
[17] W. C. Y. Lee, “Overview of cellular CDMA,” IEEE Trans. Veh. Technol., vol. 40, no. 2, pp. 291–302, May 1991.
[18] W. C. Huang, Y. S. Yang, and C. P. Li, “A new pilot architecture for sub-band uplink OFDMA systems,” IEEE Trans. Broadcast., vol. 59, no. 3, pp. 461–470, Sep. 2013.
[19] W. C. Huang, C. P. Li, and H. J. Li, “An investigation into the noise variance and the SNR estimators in imperfectly-synchronized OFDM systems,” IEEE Trans. Commun., vol. 9, no. 3, pp. 1159–1167, Mar. 2010.
[20] C. P. Li, S. H. Wang, and C. L. Wang, “Novel low-complexity SLM schemes for PAPR reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 58, no. 5, pp. 2916–2921, May 2010.
[21] C. P. Li, S. H. Wang, and K. H. Tsai, “A low complexity transmitter architecture and its application to PAPR reduction in SFBC MIMO-OFDM systems,” in Proc. IEEE Int. Conf. Commun., 2010, pp. 1–5.
[22] S. H. Wang, C. P. Li, K. C. Lee, and H. J. Su, “A novel low-complexity precoded OFDM system with reduced PAPR,” IEEE Trans. Signal Process., vol. 63, no. 6, pp. 1366–1376, Mar. 2015.
[23] K. C. Lee, S. H. Wang, C. P. Li, H. H. Chang, and H. J. Li, “Adaptive resource allocation algorithm based on cross-entropy method for OFDMA systems,” IEEE Trans. Broadcast., vol. 60, no. 3, pp. 524–531, Sept. 2014.
[24] S. H. Wang, J. C. Sie, C. P. Li, and Y. F. Chen, “Low Complexity Transmitter Architectures for SFBC MIMO-OFDM Systems,” IEEE Trans. Commun., vol. 60, no. 6, pp. 1712–1718, June 2012.
[25] W.-C. Huang, C.-H. Pan, C.-P. Li, and H.-J. Li, “Subspace-based semi-blind channel estimation in uplink OFDMA systems,” IEEE Trans. Broadcast., vol. 56, no. 1, pp. 58–65, Mar. 2010.
[26] W.-C. Huang, C.-P. Li, and H.-J. Li, “Optimal pilot sequence design for channel estimation in CDD-OFDM systems,” IEEE Trans. on Wireless Commun., vol. 11, no. 11, pp. 4006–4016, Nov. 2012.
[27] IEEE Std 802.11g-2003, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 4:Further Higher Date Rate Extension in the 2.4 GHz Band,” June 2003.
[28] IEEE Std 802.11a-1999, “Wireless LAN Medium Access Control (MAC) and Physical (PHY) Specifications:High-speed Physical Layer in the 5 GHz Band,” September 1999.
[29] IEEE Std 802.11b-1999, “Wireless LAN Medium Access Control (MAC) and Physical (PHY) Specifications:High-speed Physical Layer Extension in the 2.4 GHz Band,” September 1999.
[30] T M Kavyashree, L. Swarna Jyothi, and Umashankar Shetty C, “Design and Implementation of 4G LTE Components – eNodeB and UE on SDR platform using srsLTE,” TISI-TEEE, vol. 4, 2016.
[31] Nuand. Bladerf software de_ned radio.
http://www.nuand.com, last accessed May 2016.
[32] Ettus Research. Universal software radio peripheral.
http://Ettus.com/, last accessed May 2016.
[33] C. Cano and D. J. Leith, “Coexistence of WiFi and LTE in unlicensed bands: A proportional fair allocation scheme,” in Proc. IEEE Int. Conf. Commun. (ICC) Workshop LTE Unlicensed Bands (LTE-U), London, U.K., 2015, pp. 2288–2293.
[34] Iperf: “iPerf - The ultimate speed test tool for TCP, UDP and SCTP,”
https://iperf.fr
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code