Responsive image
博碩士論文 etd-0717118-160311 詳細資訊
Title page for etd-0717118-160311
論文名稱
Title
運用於低偏壓具有抬高本體之碰穿互補式金屬氧化物半導體
Body-Raised Punch Through CMOS for Low Power Supply Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-27
繳交日期
Date of Submission
2018-08-17
關鍵字
Keywords
功率與傳輸延遲時間指標、碰穿電晶體、低功率消耗、互補式金屬氧化物半導體、低操作偏壓
low power supply, low power dissipation, CMOS, punch through transistor, power-delay product
統計
Statistics
本論文已被瀏覽 5637 次,被下載 0
The thesis/dissertation has been browsed 5637 times, has been downloaded 0 times.
中文摘要
在本論文中,我們提出一個運用於低偏壓具有抬高本體之碰穿互補式金屬氧化物半導體。利用抬高本體的架構,使得擴散電流受到抑制,以達到低功耗應用。我們利用兩個碰穿電晶體(Punch through transistor, PTMOS)、PTPMOS和PTNMOS分別取代傳統互補式金屬氧化物半導體(Complementary metal oxide semiconductor, CMOS)反相器其中的負型金屬氧化物半導體電晶體(NMOS)與正型金屬氧化物半導體電晶體(PMOS)。其中、我們也深入探討抬高式架構碰穿電晶體的操作機制。我們發現利用抬高本體高度的碰穿電晶體架構將使得擴散電流明顯受到抑制、使得反向器的電性明顯受到改善。
根據模擬結果顯示,我們設計的具有抬高本體之碰穿互補式金屬氧化物半導體,基於鰭長度(Fin length) 20 奈米技術節點,在電源電壓VDD = 0.5 V時,BR-PTPMOS與BR-PTNMOS的開啟電流與關閉電流比(ION/IOFF)分別達到1.61 × 105與5.97 × 105;功率消耗 (Power dissipation) 則為0.18 pW。反觀相同尺寸的傳統CMOS ION/IOFF則分別為1.5 × 105與1.61 × 105;且功率消耗為955 pW。證明我們提出的具有抬高本體之碰穿互補式金屬氧化物半導體能比一般傳統互補式金屬氧化物半導體更省電。至於功率與傳輸延遲時間指標(Power delay product),我們新技術和傳統CMOS分別為0.126 nW•ns和 27.73 nW•ns ,展示了我們所設計的具有抬高本體之碰穿互補式金屬氧化物半導體能成為未來低功耗應用的候選人之一。
Abstract
In this thesis, we propose a punch through complementary metal oxide semiconductor (PTCMOS) with a raised body for suppressing diffusion current (BR-PTCMOS) in low power supply applications. Complementary behavior is achieved through two punch-through transistors. The punch-through mechanism of these two transistors is analyzed. The raised body is found to effectively suppress diffusion current.
According to the TCAD simulations, at VDD = 0.5 V, the ION/IOFF ratios are simulated to be 1.61 × 105 for the body-raised punch through PMOS (BR-PTPMOS) and 5.97 × 105 for the body-raised punch through NMOS (BR-PTNMOS) compared with 1.5 × 105 for the NMOS and 1.61 × 105 for the PMOS of conventional CMOS with the same fin length 20 nm. The new device has significant lower power dissipation than a conventional CMOS. A BR-PTCMOS inverter consumes 0.18 pW at VDD = 0.5 V with a power-delay product of 0.126 nW•ns whereas the conventional CMOS consumes 955 pW with a power-delay product of 27.73 nW•ns. Thus, the BR-PTCMOS is an attractive candidate for low power supply applications.
目次 Table of Contents
中文審定書 i
英文審定書 ii
致謝 iii
摘 要 iv
Abstract v
Contents vi
Figure Captions ix
Table Captions xiv
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 2
Chapter 2 Operation mechanism 4
2.1 Operation mechanism of BR-PTMOS 4
2.2 Operation mechanism of BR-PTCMOS inverter 10
Chapter 3 Device Design and Fabrication 12
Chapter 4 Simulation Results and Discussion 17
4.1 Electrical discussion of BR-PTPMOS 18
4.1.1 Impact of LFin on BR-PTPMOS 18
4.1.2 Impact of HB on BR-PTPMOS 20
4.1.3 Impact of LSG on BR-PTPMOS 21
4.1.4 Impact of power supply on BR-PTPMOS 22
4.2 Electrical discussion of BR-PTNMOS 24
4.2.1 Impact of LFin on BR-PTNMOS 24
4.2.2 Impact of HB on BR-PTNMOS 26
4.2.3 Impact of LSG on BR-PTNMOS 27
4.2.4 Impact of power supply on BR-PTNMOS 28
4.3 (Ⅰ) Comparison of BR-PTCMOS and the Conventional CMOS 30
4.3.1 Subthreshold Swing (SS) and ON / OFF Current (ION/IOFF) 31
4.3.2 Noise Margin (NM) 33
4.3.3 Power Dissipation (PD) 36
4.3.4 7-Ring Oscillator 37
4.3.5 Propagation Delay Time (tP) and Power Delay Product (PDP) 39
4.3.6 Static Random Access Memory (SRAM) 41
4.4 (Ⅱ) Comparison of BR-PTCMOS and the Conventional CMOS 43
4.4.1 Subthreshold Swing (SS) and ON / OFF Current (ION/IOFF) 43
4.4.2 Noise Margin (NM) 46
4.4.3 Power Dissipation (PD) 49
4.4.4 7-Ring Oscillator 50
4.4.5 Propagation Delay Time (tP) and Power Delay Product (PDP) 52
4.4.6 Static Random Access Memory (SRAM) 54
4.5 NOR Gate 56
4.6 NAND Gate 58
4.7 Full Adder 60
4.8 Comparison of PTCMOS and the BR-PTCMOS 62
4.8.1 Subthreshold Swing (SS) and ON / OFF Current (ION/IOFF) 62
4.8.2 Noise Margin (NM) 64
4.8.3 Power Dissipation (PD) 67
4.8.4 7-Ring Oscillator 67
4.8.5 Propagation Delay Time (tP) and Power Delay Product (PDP) 69
4.8.6 Static Random Access Memory (SRAM) 70
Chapter 5 Conclusion and Future Work 72
5.1 Conclusion 72
5.2 Future Work 73
Reference 74
Appendix 84
參考文獻 References
[1] W. J. Dennehy, A. G. Holmes-Siedle, and W. F. Leopold, “Transient Radiation Response of Complment-Symmetry Mos Integrated Circuit,” IEEE Transactions on Nuclear Science, vol. 16, no. 6, pp. 114–119, Dec. 1969, doi: 10.1109/TNS.1969.4325513.
[2] R.-H. Yan, A. Ourmazd, and K. F. Lee, “Scaling the Si MOSFET: From Bulk to SOI to Bulk,” IEEE Trans. Electron Devices, vol. 39, no. 7, pp. 1704–1710, Jul. 1992, doi: 10.1109/16.141237.
[3] K. K. Ng, S. A. Eshraghi, and T. D. Stanik, “An Improved Generalized Guide for MOSFET Scaling,” IEEE Trans. Electron Devices, vol. 40, no. 10, pp. 1895–1897, Oct. 1993, doi: 10.1109/16.277356.
[4] International Technology Roadmap for Semiconductor (2015), “International Technology Roadmap for Semiconductor 2.0 2015 Edition Executive Report,” Available: http://www.itrs2.net/.
[5] R. Courtland, “Moore’s Law’s Next Step: 10 Nanameters,” IEEE Spectrum, vol. 54, no. 1, pp. 52–53, Jan. 2017, doi: 10.1109/MSPEC.2017.7802750.
[6] T. N. Theis and H. S. Wong, “The End of Moore's Law: A New Beginning for Information Technology,” Computing in Science & Engineering, vol. 19, no. 2, pp. 41–50, Mar. 2017, doi: 10.1109/MCSE.2017.29.
[7] K. Flamm, “Has Moore's Law Been Repealed? An Economist's Perspective,” Computing in Science & Engineering, vol. 19, no. 2, pp. 29–40, Mar. 2017, doi: 10.1109/MCSE.2017.30.
[8] Q. Xie, C.-J. Lee, J. Xu, C. Wann, Y.-C. Sun, and Y. Taur, “Comprehensive Analysis of Short-Channel Effects in Ultrathin SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 60, no. 6, pp. 1814–1819, Jun. 2013, doi: 10.1109/TED.2013.2255878.
[9] P. M. Zeitzoff*, “CMOSFET Scaling Through the End of the Roadmap,” in Proc. Solid-State Integr. Circuit Technol., pp. 15–18, Oct. 2006, doi: 10.1109/ICSICT.2006.306044.
[10] T. Dutta, Q. Rafhay, R. Clerc, J. Lacord, S. Monfray, G. Pananakakis, F. Boeuf, and G. Ghibaudo, “Impact of quantum effects on the short channel effects of III–V nMOSFETs in weak and strong inversion regimes,” Solid-State Electronics, vol. 88, pp. 43–48, Oct. 2013, doi: https://doi.org/10.1016/j.sse.2013.04.007.
[11] Q. Xie, C.-J. Lee, J. Xu, C. Wann, Y.-C. Sun, and Y. Taur, “Comprehensive Analysis of Short-Channel Effects in Ultrathin SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 60, no. 6, pp. 1814–1819, Jun. 2013, doi: 10.1109/TED.2013.2255878.
[12] A. Gill, C. Madhu, and P. Kaur, “Investigation of short channel effects in Bulk MOSFET and SOI FinFET at 20nm node technology,” in Annual IEEE India Conference, pp. 1–4, Dec. 2015, doi: 10.1109/INDICON.2015.7443263.
[13] X.-L. Yang, Y. Li, X.-Y. Xie, S. Zhang, Z.-X. Shen, F. Zhou, X. He, J. Zhao, G. Mao, A. Wang and J.-H. Ju, “Analysis of short channel effects for 14nm and beyond Si-bulk FinFET,” in China Semiconductor Technology International Conference, pp. 1–3, Mar. 2016, doi: 10.1109/CSTIC.2016.7464044.
[14] X. Yuan, “Gate-Induced-Drain-Leakage Current in 45-nm CMOS Technology,” IEEE Transactions on Device and Materials Reliability, vol. 8, no. 3, pp. 501–508, Sep. 2008, doi: 10.1109/TDMR.2008.2002350.
[15] J. Tonfat, G. Flach, and R. Reis, “Leakage current analysis in static CMOS logic gates for a transistor network design approach,” International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS), pp. 107–113, Sep. 2016, doi: 10.1109/PATMOS.2016.7833673.
[16] A. Asenov, G. Slavcheva, A. R. Brown, J. H. Davies, and S. Saini, “Increase in the Random Dopant Induced Threshold Fluctuations and Lowering in Sub-100 nm MOSFETs Due to Quantum Effects: A 3-D Density-Gradient Simulation Study,” IEEE Trans. Electron Devices, vol. 48, no. 4, pp. 722–729, Apr. 2001, doi: 10.1109/16.915703.
[17] E. Chatzikyriakou, K. Morgan, P. Ashburn, W. R. White and C. H. De Groot, “Total Ionizing Dose and random dopant fluctuation effects in 65-nm gate length partially depleted Silicon-on-Insulator nMOSFETs,” in IEEE 15th International Conference on Nanotechnology, pp. 659–662, Jul. 2015, doi: 10.1109/NANO.2015.7388691.
[18] B. M. Wilamowski and R. C. Jaeger, “The Lateral Punch-Through Transistor,” IEEE Electron Device Lett., vol. 3, no. 10, pp. 277–280, Oct. 1982, doi: 10.1109/EDL.1982.25568.
[19] R. Gonzalez, B. M. Gordon, and M. A. Horowitz, “Supply and Threshold Voltage Scaling for Low Power CMOS,” IEEE Journal of Solid-State Circuits, vol. 32, no. 8, pp. 1210–1216, Aug. 1997, doi: 10.1109/4.604077.
[20] S.-Y. Kim, Y.-M. Kim, K.-H. Baek, B.-K Choi, K.-R. Han, K.-H. Park, and J.-H. Lee, “Temperature Dependence of Substrate and Drain-Currents in Bulk FinFETs,” IEEE Trans. Electron Devices, vol. 54, no. 5, pp. 1259–1264, May. 2007, doi: 10.1109/TED.2007.894605.
[21] C. R. Manoj, M. Nagpal, D. Varghese, and V. Rao, “Device Design and optimization Considerations for Bulk FinFETs,” IEEE Trans. Electron Devices, vol. 55, no. 2, pp. 609–615, May. 2008, doi: 10.1109/TED.2007.912996.
[22] P. G. D. Agopian, J. A. Martino, R. Rooyackers, A. Vandooren, E. Simoen and C. Claeys, “Experimental comparison between trigate p-TFET and p-FinFET analog performance as a function of temperature,” IEEE Trans. Electron Devices, vol. 60, no. 8, pp. 2493–2497, Aug. 2013, doi: 10.1109/TED.2013.2267614.
[23] K.-I. Seo, “A 10nm platform technology for low power and high performance application featuring FinFET devices with multi workfunction gate stack on bulk and SOI,” in Symposium on VLSI Tech., pp. 1–2, Sep. 2014, doi: 10.1109/VLSIT.2014.6894342.
[24] A. M. Bughio, S. D. Guerrieri, F. Bonani and G. Ghione, “Multi-gate FinFET Mixer Variability assessment through physics-based simulation,” IEEE Electron Device Lett., vol. 38, no. 8, pp. 1004–1007, Jun. 2017, doi: 10.1109/LED.2017.2717460.
[25] P. H. Vardhan, S. Mittal, S. Ganguly and U. Ganguly, “Analytical Estimation of Threshold Voltage Variability by Metal Gate Granularity in FinFET,” IEEE Trans. Electron Devices, vol. 64, no. 8, pp. 3071–3076, Jun. 2017, doi: 10.1109/TED.2017.2712763.
[26] S.-A. Chew, H. Yu, M. Schaekers, S. Demuynck, G. Mannaert, E. Kunnen, E. Rosseel, A. Hikavyy, A. Dangol, K. D. Meyer, D. Mocuta, N. Horiguchi, G. Leusink, C. Wajda, T. Hakamata, T. Hasegawa, K. Tapily and R. Clark, “Ultralow Resistive Wrap Around Contact to Scaled FinFET Devices by using ALD-Ti Contact Metal,” in IEEE International Interconnect Technology Conference, pp. 1–3, Jul. 2017, doi: 10.1109/IITC-AMC.2017.7968969.
[27] E. P. Hema, G. Sheu, M. Aryadeep and S. M. Yang, “A study of interstitial effect on UMOS performance,” in 8th International Power Engineering and Optimization Conference, pp. 178–181, Mar. 2014, doi: 10.1109/PEOCO.2014.6814421.
[28] W.-C. Zhou, P.-F. Wang, and D.-W. Zhang, “A sub-10nm U-shape FinFET design with suppressed leakage current and DIBL effect,” in China Semiconductor Technology International Conference, pp. 1–3, Mar. 2015, 10.1109/CSTIC.2015.7153322.
[29] R. Muralidhar, I. Lauer, J. Cai, D. J. Frank and P. Oldiges, “Toward Ultimate Scaling of MOSFET,” IEEE Trans. Electron Devices, vol. 63, no. 1, pp. 524–526, Jan. 2016, doi: 10.1109/TED.2015.2500582.
[30] R. Li, Y. Liu, and K. Zhang, “Punch Through Stop Layer Optimization in Bulk FINFETS,” in Proc. Solid-State Integr. Circuit Technol., pp. 1–3, Oct. 2014, doi: 10.1109/ICSICT.2014.7021523.
[31] M. Nawaz, P. Haibach, and W. Molzer, “Optimization of Halo Implant Using 3D TCAD for Nanoscale MuGFETs,” in IEEE 2006 International Conference on Simulation of Semiconductor Processes and Devices, pp. 176–179, Sep. 2006, doi: 10.1109/SISPAD.2006.282867.
[32] C. H. Sun*, J.-T. Lin, H. H. Chen, Y. C. Eng, C. H. Kuo, T. F. Chang, C. Y. Chen, P. H. Lin, and H. N. Chiu, “Numerical Study of Non-Classical Unipolar CMOS with different Embedded Oxide and Gate length,” Symposium on Next Generation Electronics, pp. 21–24, Nov. 2010, doi: 10.1109/ISNE.2010.5669137.
[33] J.-T. Lin, H.-H. Chen, K.-Y. Lu, C.-H. Sun, T. Y. Lai and F.-L. Yang, “A unipolar-CMOS with recessed source/drain load,” in 9th IEEE International conference on ASIC, pp. 534–546, Feb. 2012, doi: 10.1109/ASICON.2011.6157262.
[34] Y.-H. Lin*, J.-T. Lin, M.-T. Shih, P.-H. Lin, Z.-H. Huang, J.-M. Syu, D.-R. Lu, and Y.-C. Wang, “A Novel Non-classical Unipolar CMOS Inverter with Elevated Body and Two Embedded Oxide,” in Proc. Solid-State Integr. Circuit Technol., pp. 1–3, Oct. 2014, doi: 10.1109/ICSICT.2014.7021283.
[35] W. H. Lee, J.-T. Lin, K. C. Juang, T. C. Chang, C. K. Huang, C. C. Lai, B. C. Yan and Y. H. Lin, “An improved unipolar CMOS with elevated body and spacer for low-power application,” Berkeley Symposium on Energy Efficient Electronic Systems, pp. 1–3, Oct. 2015, doi: 10.1109/E3S.2015.7336806.
[36] J. Mazurier, “Drain current variability and MOSFET parameters correlations in planar FDSOI technology,” in IEDM Tech. Dig., pp. 25.5.1–25.5.4, Dec. 2011, doi: 10.1109/IEDM.2011.6131613.
[37] ATHENA User’s Manual: Device Simulation Software, Silvaco International Inc., Santa Clara, Sep. 2010.
[38] ATLAS User’s Manual: Device Simulation Software, Silvaco International Inc., Santa Clara, Sep. 2010.
[39] R. J. Baker, CMOS Circuit Design, Layout, and Simulation, Third Edition, A John Wiley & Sons, inc., publication, pp. 337–341, 2010.
[40] R. J. Baker, CMOS Circuit Design, Layout, and Simulation, Third Edition, A John Wiley & Sons, inc., publication, pp. 316–320, 2010.
[41] N. H. E. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective, Forth Edition, Boston, MA: Pearson Education, pp.501–503, 2010.
[42] W.-C. Chien and S.-Y. Tan, “Investigation on electrical properties of TiN metal gate in different thickness,” in Hua Kang Journal of Engineering Chinese Culture University, pp. 173–177, Jun. 2012, doi: 10.29987/CCUHKJE.201206.0027.
[43] C.-H. Chen, Y.-C. Fang, and S.-Y. Chu, “Effects of fin width on high-k/metal gate bulk FinFET devices,” Electronics Letters, vol. 50, no. 16, pp. 1160–1162, Aug. 2014, doi: 10.1049/el.2014.1117.
[44] N. Agrawal, A. V. Thathachary, S. Mahapatra and S. Datta, “Impact of Varying Indium(x) Concentration and Quantum Confinement on PBTI Reliability in InxGa1-xAs FinFET,” IEEE Electron Device Lett., vol. 36, no. 2, pp. 120–122, Feb. 2015, doi: 10.1109/LED.2014.2385055.
[45] Y. Yamamoto, H. Makiyama, T. Yamashita, H. Oda, S. Kamohara, N. Sugii, Y. Yamaguchi, T. Mizutani, M. Kobayashi and T. Hiramoto, “Novel single p+poly-Si/Hf/SiON gate stack technology on silicon-on-thin-buried-oxide (SOTB) for ultra-low leakage applications,” in Proc. Symp. VLSI Tech., pp. 170–171, Jun. 2015, doi: 10.1109/VLSIT.2015.7223665.
[46] B. Singh, D. Gola, S. Kumar, K. Singh, E. Goel and S. Jit, “Performance evaluation of double gate junctionless field effect transistor with vertical Gaussian doping profile,” in International Conference on Recent Trends in Electronics, Information & Communication Technology, pp. 769–772, May 2016, doi: 10.1109/RTEICT.2016.7807930.
[47] D. Bae, G. Bae, K. K. Bhuwalka, S.-H. Lee, M.-G. Song, T.-S. Jeon, C. Kim, W. Kim, J. Park, S. Kim, U. Kwon, J. Jeon, K.-Jim. Nam, S. Lee, S. Lian, K.-ill. Seo, S.-Ghil. Lee, J. H. Park, Y.-C. Heo, *M. S. Rodder, *J. A. Kittl, Y. Kim, K. Hwang, D.-W. Kim, M.-S. Liang and E. Jung, “A novel tensile Si (n) and compressive SiGe (p) dual-channel CMOS FinFET co-integration scheme for 5nm logic applications and beyond,” in IEDM Tech. Dig., pp. 28.1.1–28.1.4, Dec. 2016, doi: 10.1109/IEDM.2016.7838496.
[48] M. Takenaka, Y. Kim, J. Han, J. Kang, Y. Ikku, Y. Cheng, J. Park, M. Yoshida, S. Takashima and S. Takagi, “Heterogeneous CMOS Photonics Based on SiGe/Ge and III-V Semiconductors Integrated on Si Platform,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 26, no. 3, Jan. 2017, Art.ID. 8200713, doi: 10.1109/JSTQE.2017.2660884.
[49] N.-C. Wang, S. Sinha, B. Cline, C. D. English, G. Yeric and E. Pop, “Replacing copper interconnects with graphene at a 7-nm node,” in IEEE International Interconnect Technology Conference, pp. 1–3, May 2017, doi: 10.1109/IITC-AMC.2017.7968949.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code