Responsive image
博碩士論文 etd-0717118-160820 詳細資訊
Title page for etd-0717118-160820
論文名稱
Title
感潮帶人工濕地溫室氣體季節排放特性及碳匯功能解析-以援中港濕地西區為例
Seasonal Variation of Greenhouse Gas Emissions and Carbon Sink from a Tidal Constructed Wetland - A Case Study of West Yuanjhong Harbor Wetland
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
186
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-15
繳交日期
Date of Submission
2018-08-17
關鍵字
Keywords
碳收支、溫室氣體連續監測、感潮帶人工濕地、日夜及季節變化、全球暖化潛勢
in-situ continuous monitoring of greenhouse gases (GHGs), Tidal constructed wetland, global warming potential (GWP), diurnal and seasonal variation, carbon sequestration
統計
Statistics
本論文已被瀏覽 5675 次,被下載 2
The thesis/dissertation has been browsed 5675 times, has been downloaded 2 times.
中文摘要
濕地為地球三大生態系統之一,在氣候變化、生物多樣性、水文學和人類健康方面扮演著關鍵角色,其具有高初級生產力、底泥厭氧環境及有機質分解緩慢等特性,能將有機碳儲存於濕地的土壤、底泥和植物中,使濕地成為陸域生態系統中碳密度最高及地球上重要的碳儲存場(carbon stock)。此外,當濕地中的植物行光合作用時,則可將空氣中二氧化碳(CO2) 轉換為醣類而儲存於植物體中,但濕地因長期淹水的狀態,沉積物在厭氧環境下,微生物會經由甲烷化(methanogenesis)作用、硝化(nitrification)及脫硝(denitrification)作用,分別產生甲烷(CH4)及氧化亞氮(N2O)。
本研究選擇台灣南部的援中港濕地,並針對濕地內三種主要棲地環境(泥灘、植物相及水面),分別進行溫室氣體排放濃度之在線連續監測及植物淨初級生產量的估算,並深入探討季節、晝夜、潮汐對於溫室氣體排放量之影響。本研究採用自行設計之開放式動態浮動氣罩(open dynamic floating chamber)結合非分散性紅外線光譜儀(NDIR),進行四季(每季六天)之溫室氣體在線連續監測,計算不同棲地環境的溫室氣體的排放通量及淨初級生產量,並推估二氧化碳排放當量(CO2e)及碳匯能力,以暸解感潮帶人工濕地對全球暖化的影響潛勢。
研究結果顯示,感潮帶人工濕地溫室氣體排放濃度呈現明顯的日夜變化趨勢,其中CO2為日低夜高,而CH4及N2O則為日高夜低。溫室氣體排放通量在季節變化大致呈現夏季>秋季>春季>冬季的趨勢。就三種不同棲地環境(泥灘、植物相及水面)而言,植物相的排放量明顯高於其他棲地環境。在三種溫室氣體中,以N2O的CO2e為最高,因GWP(265)值較高所導致,使得N2O (2,203 g CO2e m-2 yr-1)對於全球暖化的影響明顯大於CO2 (635 g CO2e m-2 yr-1)及CH4 (313 g CO2e m-2 yr-1)。援中港濕地淨初級生產量為26.13 t C yr-1,碳吸存量為1,030.5 g C m-2 yr-1,濕地全球暖化潛勢為1,008.0 g CO2e m-2 yr-1,屬碳匯型濕地,土壤碳儲存量為158.3 t C。
Abstract
Wetland is one of three most important ecosystems and natural resources on the earth. Due to its botanical productivity, high water levels, anaerobic underground environment, and slow decomposition of organic matters, wetland is able to uptake carbon dioxide (CO2) from the atmosphere and convert it into organic carbon captured in soil, mudflat, or scrap plants, in a process called carbon sequestration. In the case of sediments hypoxia, the microorganisms produce CH4 via methanation, while nitrification and incomplete denitrification processes produce N2O transmitting to the water, and finally emit to the atmosphere. Consequently, it is important to monitor the emissions of GHGs released from the wetlands. For this particular study, we developed an NDIR GHG monitoring system to continuously monitor GHG emissions from a tidal constructed wetland at three habitats (mudflat, mangrove, and water surface) for 6 day in four seasons. Compared to the traditional gas chromatography, the GHG monitoring system is able to explore the diurnal variation of GHG emissions from the wetlands, and estimate more accurately the GHG emission based carbon budget of the wetlands.
Field measurement results demonstrated that the continuous monitoring technique is feasible and valuable for assessing the variation of GHG uptake/emission to/from wetlands. Daytime CO2 emissions were always lower than those at nighttime, while an opposite trend was observed for CH4 and N2O emissions. Seasonal variation of GHGs showed the highest GHG emissions was observed in summer, and followed by fall, spring, and winter. For three habitats, mangrove emitted more amounts of GHGs than other habitats. However, among three GHGs, the effect of N2O (2,203 g CO2e m-2 yr-1) on global warming was much higher than CO2 (635 g CO2e m-2 yr-1) and CH4 (313 g CO2e m-2 yr-1). The net primary production of the mangrove constructed wetland was 26.13 t C yr-1, the carbon sequestration was 1,030.5 g C m-2 yr-1, and the global warming potential of the mangrove constructed wetland was 1,008.0 g CO2e m-2 yr-1, and the carbon stock was 158.3 t C.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
1.3 研究範疇及架構 4
第二章 文獻回顧 5
2.1 溫室氣體背景資料 5
2.1.1 溫室氣體的排放來源 5
2.1.2 溫室氣體的排放現況 9
2.1.3 濕地的溫室氣體排放機制 13
2.2 濕地背景資料 17
2.2.1 濕地之定義及種類 17
2.2.2 濕地的功能與重要性 26
2.2.3 濕地環境的碳、氮循環 28
2.2.4 全球碳庫及濕地碳匯 32
2.3 濕地溫室氣體排放量測技術 35
2.4 國內外濕地溫室氣體排放相關研究 38
第三章 研究方法 42
3.1 研究對象與規劃 42
3.1.1 援中港濕地 42
3.1.2 採樣時間規劃 44
3.1.3 採樣樣區規劃 45
3.2 採樣及分析方法 46
3.2.1 溫室氣體採樣及在線連續監測方法 46
3.2.2 淨初級生產量分析方法 49
3.2.3 土壤碳庫分析方法 51
3.2.4 水質在線連續監測方法 55
3.3 濕地碳收支估算方法 57
3.4 濕地全球暖化潛勢估算方法 59
3.5 相關性分析方法 60
第四章 結果與討論 62
4.1 援中港濕地環境與氣象條件 62
4.1.1 環境概況 62
4.1.2 氣象條件現況 62
4.2 援中港濕地溫室氣體排放濃度變化趨勢 72
4.2.1 CO2排放濃度變化趨勢 72
4.2.2 CH4排放濃度變化趨勢 77
4.2.3 N2O排放濃度變化趨勢 83
4.3 援中港濕地溫室氣體排放通量變化趨勢 89
4.3.1 CO2排放通量變化趨勢 89
4.3.2 CH4排放通量變化趨勢 90
4.3.3 N2O排放通量變化趨勢 92
4.4 援中港濕地溫室氣體與水質及環境參數之相關性分析 94
4.4.1 雷達圖分析 94
4.4.2 主要影響參數的三相圖分析 97
4.4.3 多項式迴歸分析 100
4.5 援中港濕地淨初級生產量估算 102
4.6 援中港濕地碳收支估算 106
4.7 援中港濕地全球暖化潛勢估算 107
4.8 援中港濕地碳庫估算 110
4.8.1 土壤碳含量 110
4.8.2 土壤碳密度 112
4.8.3 土壤碳儲存量 113
第五章 結論與建議 114
5.1 結論 114
5.2 建議 116
參考文獻 117
附件 126
參考文獻 References
Abril, G., Guérin, F., Richard, S., Delmas, R., Galy-Lacaux, C., Gosse, P., Tremblay, A., Varfalvy, L., & Matvienko, B., “Carbon dioxide and methane emissions and the carbon budget of a 10-year-old tropical reservoir (Petit-Saut, French Guiana),” Global Biogeochemical Cycles, 19, GB4007, 2005.
Allen, D.E., Dalal, R.C., Rennenberg, H., Meyer, R.L., Reeves, S., & Schmidt, S., “Spatial and temporal variation of nitrous oxide and methane flux between subtropical mangrove sediments and the atmosphere,” Soil Biology and Biochemistry, 39(2), 622-631, 2007.
Anderson, C.J. & Mitsch, W.J., “Sediment, carbon, and nutrient accumulation at two 10-year-old created riverine marshes,” Wetlands, 26(3), 779-792, 2006.
Barr, J. G., Engel, V., Fuentes, J. D., Zieman, J. C., O'Halloran, T. L., Smith, T. J., & Anderson, G. H., “Controls on mangrove forest‐atmosphere carbon dioxide exchanges in western Everglades National Park,” Journal of Geophysical Research: Biogeosciences, Biological and Environmental Research Information System (BERIS), 115(G2), 2010.
Bonneville, M. C., Strachan, I. B., Humphreys, E. R., & Roulet, N. T., “Net ecosystem CO2 exchange in a temperate cattail marsh in relation to biophysical properties,” Agricultural and Forest Meteorology, 148(1), 69-81, 2008.
Bouillon, S., Borges, A.V., Castaňeda-Moya, E., Diele, K., Dittmar, T., Duke, N.C., & Twilley, R.R., “Mangrove production and carbon sinks: A revision of global budget estimates,” Global Biogeochemical Cycles, 22(2), 1-12, 2008.
Bouillon, S., Raman, A.V., Dauby, P., & Dehairs, F., “Carbon and nitrogen stable isotope ratios of subtidal benthic invertebrates in an Estuarine Mangrove Ecosystem (Andhra Pradesh, India),” Estuarine, Coastal and Shelf Science, 54(5), 901-13, 2001.
Brix, H., Sorrell, B.K., & Lorenzen, B., “Are phragmites-dominated wetlands a net source or net sink of greenhouse gases,” Aquatic Botany, 69(2-4), 313-324, 2001.
Cameron, A., “Claudian: Poetry and Propaganda at the Court of Honorius,” Clarendon Press, 1970.
Castillo, J.A.A., Apan, A.A., Maraseni, T.N., & Salmo III, S.G., “Soil greenhouse gas fluxes in tropical mangrove forests and in land uses on deforested mangrove lands,” Catena, 159, 60-69, 2017.
Change, I.C., “The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change,” Cambridge, Cambridge University Press, 1996.
Chen, Y., Chen, G., & Ye, Y., “Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation,” Science of the Total Environment, 526, 19-28, 2015.
Chen, G.C., Tam, N.F., & Ye, Y., “Spatial and seasonal variations of atmospheric N2O and CO2 fluxes from a subtropical mangrove swamp and their relationships with soil characteristics,” Soil Biology and Biochemistry, 48, 175-181, 2012.
Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R.V., Paruelo, J., Sutton, P., Belt, M., & Raskin, R.G., “The value of the world's ecosystem services and natural capital,” Nature, 387(6630), 253, 1997.
Craft, C.B. & Richardson, C.J., “Peat accretion and N, P, and organic C accumulation in nutrient‐Enriched and unenriched everglades peatlands,” Ecological Applications, 3(3), 446-458, 1993.
Cui, X., Liang, J., Lu, W., Chen, H., Liu, F., Lin, G., Lin, F., Xu, F., Luo, Y., & Lin, G., “Stronger ecosystem carbon sequestration potential of mangrove wetlands with respect to terrestrial forests in subtropical China,” Agricultural and Forest Meteorology, 249, 71-80, 2018.
Day, J.W.Jr., Carlos, Coronado-Molina., Vera-Herrera, F.R., Twilley, R., Rivera-Monroy, V.H., Alvarez-Guillen, H., Day, R., & Conner, W., “A 7 year record of above-ground net primary production in a southeastern Mexican mangrove forest,” Aquatic Botany, 55(1), 39-60, 1996.
DellaSala, D.A., “The Carbon Cycle and Global Change: Too Much of a Good Thing,” Encyclopedia of the Anthropocene, 2, 7-10, 2018.
Fennessy, M.S., Wardrop, D.H., Moon, J.B., Wilson, S., & Craft, C., “Soil carbon sequestration in freshwater wetlands varies across a gradient of ecological condition and by ecoregion,” Ecological Engineering, 2017.
Gorham, E., “Northern peatlands: role in the carbon cycle and probable responses to climatic warming,” Ecological Applications, 1(2), 182-195, 1991.
Goulven, G., Hans, H., Caroline, P., & Alberto, V., “Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially‐explicit typology of estuaries and continental shelves,” Geophysical Research Letters, 37, L15607, 2010.
Hadi, A., Inubushi, K., Furukawa, Y., Purnomo, E., Rasmadi, M., & Tsuruta, H., “Greenhouse gas emissions from tropical peatlands of Kalimantan, Indonesia,” Nutrient Cycling in Agroecosystems, 71(1), 73-80, 2005.
Hemond, H.F., “Biogeochemistry of Thoreau's Bog, Concord, Massachusetts,” Ecological Monographs, 50(4), 507-526, 1980.
Hu, S., Niu, Z., Chen, Y., Li, L., & Zhang, H., “Global wetlands: Potential distribution, wetland loss, and status,” Science of the Total Environment, 586, 319-327, 2017.
International Water Association (IWA)., “Constructed Wetlands for Pollution Control. Processes, Performance,” Design and Operation, IWA Publishing, London, 2000.
Johansson, A.E., Gustavsson, A.M., Öquist, M.G., & Svensson, B.H., “Methane emissions from a constructed wetland treating wastewater-Seasonal and spatial distribution and dependence on edaphic factors,” Water Research, 38(18), 3960-3970, 2004.
JØrgensen, C.J., Struwe, S., & Elberling, B., “Temporal trends in N2O flux dynamics in a Danish wetland-Effects of plant-mediated gas transport of N2O and O2 following changes in water level and soil mineral- N availability,” Global Change Biology, 18, 210-222, 2012.
Kayranli, B., Scholz, M., Mustafa, A., & Hedmark, Å., “Carbon storage and fluxes within freshwater wetlands: A critical review,” Wetlands, 30(1), 111-124, 2010.
Komiyama, A., Ong, J. E., & Poungparn, S., “Allometry, biomass, and productivity of mangrove forests: A review,” Aquatic Botany, 89(2), 128-137, 2008.
Krithika, K., Purvaja, R., & Ramesh, R., “Fluxes of methane and nitrous oxide from an Indian mangrove,” Current Science, 94(2), 218-224, 2008.
Liikanen, A., Huttunen, J.T., Karjalainen, S.M., Heikkinen, K., Väisänenb, T.S., Nykänena, H., & Martikainena, P.J., “Temporal and seasonal changes in greenhouse gas emissions from a constructed wetland purifying peat mining runoff waters,” Ecological Engineering, 26, 241-251, 2006.
Lunstrum, A. & Chen, L., “Soil carbon stocks and accumulation in young mangrove forests,” Soil Biology and Biochemistry, 75, 223-232, 2014.
Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichstein, M., Papale, D., Piao, S. L., Schulze, E. D., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beer, C., Bernhofer, C., Black, K. G., Bonal, D., Bonnefond, J. M., Chambers, J., Ciais, P., Cook, B., Davis, K. J., Dolman, A. J., Gielen, B., Goulden, M., Grace, J., Granier, A., Grelle, A., Griffis, T., Grünwald, T., Guidolotti, G., Hanson, P. J., Harding, R., Hollinger, D. Y., Hutyra, L. R., Kolari, P., Kruijt, B., Kutsch, W., Lagergren, F., Laurila, T., Law, B. E., Le Maire, G., Lindroth, A., Loustau, D., Malhi, Y., Mateus, J., Migliavacca, M., Misson, L., Montagnani, L., Moncrieff, J., Moors, E., Munger, J. W., Nikinmaa, E., Ollinger, S. V., Pita, G., Rebmann, C., Roupsard, O., Saigusa, N., Sanz, M. J., Seufert, G., Sierra, C., Smith, M. L., Tang, J., Valentini, R., Vesala, T., & Janssens, I. A., “CO2 balance of boreal, temperate, and tropical forests derived from a global database,” Global Change Biology, 13(12), 2509-2537, 2007.
Malmer, N., “3.1. Development of bog mires,” Coupling of Land and Water Systems, 10, 83-103, 1975.
Mander, Ü., Lõhmus, K., Teiter, S., Mauring, T., Nurk, K., & Augustin, J., “Gaseous fluxes in the nitrogen and carbon budgets of subsurface flow constructed wetlands,” Science of the Total Environment, 404(2-3), 343-353, 2008.
McCarty, G.W. & Ritchie, J.C., “Impact of soil movement on carbon sequestration in agricultural ecosystems,” Environmental Pollution, 116(3), 423-430, 2002.
Mitra, S., Wassmann, R., & Vlek, P. L., “An appraisal of global wetland area and its organic carbon stock,” Current Science, 88(1), 25-35, 2005.
Mitsch, W.J., Bernal, B., & Hernandez, M.E., “Ecosystem services of wetlands,” 2015.
Mitsch, W.J. & Gosselink, J.G., “Wetlands,” John Wiley & Sons, 177-18, 2007.
Mitsch, W.J. & Gosselink, J.G., “The value of wetlands: Importance of scale and landscape setting,” Ecological Economics, 35(1), 25-33, 2000.
Mitsch, W.J. & Wu, X., “Wetlands and Global Change,” Boca Raton, CRC Lewis Publishers, 205-230, 1995.
Moore, P.D. & Bellamy, D.J., “Peatlands,” London:Elek Science, 221, 1974.
Nahlik, A.M. & Fennessy, M.S., “Carbon storage in US wetlands,” Nature Communications, 7, 13835, 2016.
National Wetlands Working Group, 1988.
Nichols, D.S., “Capacity of natural wetlands to remove nutrients from wastewater,” Water Environment Federation, 55(5), 495-505, 1983.
Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N.K., Edenhofer, O., Elgizouli, I., Field, C. B., Forster, P., Friedlingstein, P., Fuglestvedt, J., Gomez-Echeverri, L., Hallegatte, S., Hegerl, G., Howden, M., Jiang, K., Jimenez Cisneroz, B., Kattsov, V., Lee, H., Mach, K. J., Marotzke, J., Mastrandrea, M. D., Meyer, L., Minx, J., Mulugetta, Y., O'Brien, K., Oppenheimer, M., Pereira, J. J., Pichs-Madruga, R., Plattner, G. K., Pörtner, H. O., Power, S. B., Preston, B., Ravindranath, N. H., Reisinger, A., Riahi, K., Rusticucci, M., Scholes, R., Seyboth, K., Sokona, Y., Stavins, R., Stocker, T. F., Tschakert, P., van Vuuren, D., & van Ypserle, J. P., “Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,” IPCC, 151, 2014.
Poungparn, S., Komiyama, A., Tanaka, A., Sangtiean, T., Maknual, C., Kato, S., Tanapermpool, P., & Patanaponpaiboon, P., “Carbon dioxide emission through soil respiration in a secondary mangrove forest of eastern Thailand,” Journal of Tropical Ecology, 25(4), 393-400, 2009.
Prasad, P.V.V., Thomas, J.M.G., & Narayanan, S., “Global Warming Effects,” Encyclopedia of Applied Plant Sciences, 289-299, 2017.
Pulselli, F.M. & Marchi, M., “Global Warming Potential and the Net Carbon Balance,” 2013.
Ramsar Convention Bureau., “Wetlands Values and Functions,” Gland, Switzerland, 2001.
Riebeek, H., “NASA Earth Observatory,” 2011.
Roulet, N.T., “Peatlands, carbon storage, greenhouse gases, and the Kyoto protocol: prospects and significance for Canada,” Wetlands, 20(4), 605-615, 2000.
Schrier-Uijl, A.P., Varaart, A.J., Leffelaar, P.A., Berendse, F., & Veenendaal, E.M., “Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands,” Biogeochemistry, 102, 265-279, 2010.
Solomon, S.Ed., “Climate Change 2007-The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC (Vol. 4),” Cambridge University Press, 2007.
Stadmark, J. & Leonardson, L., “Emissions of greenhouse gases from ponds constructed for nitrogen removal,” Ecological Engineering, 25(5), 542–551, 2005.
Tanner, C.C., “Plants as ecosystem engineers in subsurface-flow treatment wetlands,” Water Science and Technology, 44(11-12), 9-17, 2001.
Trepel, M. & Palmeri, L., “Quantifying nitrogen retention in surface flow wetlands for environmental planning at the landscape-scale,” Ecological Engineering, 19(2), 127-140, 2002.
Trumbore, S.E., Bubier, J.L., Hander, J.W., & Grill, P.M., “Carbon cycling in boreal wetlands: A comparison of three approaches,” Journal of Geophysical Research, 104(22), 27,673-27, 682, 1999.
WBGU, W., “Special Report: the Accounting of Biological Sink and Sources under the Kyoto Protocol,” 1998.
World Meteorological Organization., “WMO Statement on the State of the Global Climate in 2016,” 2016.
World Resources Institute., “WRI’s CAIT Climate Data Explorer,” 2014.
Yang, W.B., Yuan, C.S., Tong, C., Yang, P., Yang, L., & Huang, B.Q., “Diurnal variation of CO2, CH4, and N2O emission fluxes continuously monitored in-situ in three environmental habitats in a subtropical estuarine wetland,” Marine Pollution Bulletin, 119(1), 289-298, 2017.
Yang, W.B., Yuan, C.S., Huang, B.Q., Tong, C., & Yang, L., “Emission characteristics of greenhouse gases and their correlation with water quality at an estuarine mangrove ecosystem–the application of an in-situ on-site NDIR monitoring technique,” Wetlands, DOI:10.1007 / s13157-018-1015-8.
Zhu, T. & Sikora, F.J., “Ammonium and nitrate removal in vegetated and unvegetated gravel bed microcosm wetlands,” Water Science and Technology, 32(3), 219-228, 1995.
中央氣象局,交通部,2018。
中國科學院蘭州文獻情報中心,“氣候變化科學動態監測快報”,第9期,2017。
謝世鴻,“海岸型鹹水濕地原生植栽與外來植栽溫室氣體排放特性之比較-以高美濕地為例”, 國立中山大學環境工程研究所碩士論文 ,2017。
行政院環境保護署,“中華民國國家溫室氣體排放清冊報告”,2017。
蔡承斌,“鹹水人工濕地溫室氣體排放連續監測及碳收支解析”, 國立中山大學環境工程研究所碩士論文 ,2016。
李世博,“台南七股紅樹林碳收支模式”,國立中興大學生命科學系碩士論文,2015
許鳳育,“利用能值評估淡水河生態系服務與永續利用”,國立中興大學生命科學系碩士學位論文,2014。
陳柏宏,“淡水河紅樹林及草澤植物的碳儲存量與碳收支”,國立中興大學生命科學系碩士學位論文 ,2014。
姜春足,“急水溪河口紅樹林濕地碳匯之初探”,崑山科技大學進修部環境工程研究所碩士論文,2013。
曾財發,“生態工程在濕地公園之應用-以援中港濕地公園為例”,正修科技大學營建工程研究所碩士論文,2012。
萬鑫偉,“七股鹽田濕地潮間帶灘地初級生產量及溫室氣體通量調查”,嘉南藥理科技大學環境工程與科學系碩士論文,2012。
何佳穎,“南台灣紅樹林濕地碳吸存能力之調查及估算”,嘉南藥理科技大學環境與工程與科學系碩士論文,2012。
林瑩峰、陳國超,“濕地與全球暖化”,台灣濕地保護聯盟,2012。
陳家璽,“南臺灣淡水埤塘與鹹水潟湖溫室氣體通量之調查”,嘉南藥理科技大學環境與工程與科學系碩士論文,2012。
內政部營建署城鄉發展分屬,“100年國家重要濕地碳匯功能調臺標準作業程序”,2011。
莊建和,“人工濕濕地碳收支平衡及碳匯能力之研究”,嘉南藥理科技大學環境與工程與科學系碩士論文,2010。
歐陽長風,“台灣氣態污染物背景值變化特徵與大氣傳輸機制之關係”,國立中央大學化學研究所博士論文,2010。
賴建志,“人工濕地之甲烷及氧化亞氮釋放研究”,嘉南藥理科技大學環境與工程與科學系碩士論文,2008。
范貴珠,“台南縣急水溪海茄苳林分枯落物量及養分之動態變化”,臺灣林業科學,22(4),441-454,2007。
高雄市政府工務局,2006。
曾筱君,“台灣周遭水域CH4和N2O的分佈”,國立中山大學海洋地質及化學研究所碩士論文,2005。
邱文彥,“海岸管理:理論與實務”,國立編譯館審定,五南圖書出版公司印行 (二刷一版),2003。
楊盛行、劉清標、陳顗竹、張讚昌、魏嘉碧、賴朝明、王銀波、趙震慶、張哲明、王樹倫、陳鎮東,“台灣河川湖泊溼地甲烷及氧化亞氮排放量測”,全球變遷通訊雜誌,40,59-71,2003。
濕地保護工作委員會,行政院環境保護署,1994。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code