Responsive image
博碩士論文 etd-0717118-165838 詳細資訊
Title page for etd-0717118-165838
論文名稱
Title
南中國海及台灣海峽大氣型態汞長程傳輸探討
Long-range Transport of Speciated Mercury in the Atmosphere of South China Sea and Taiwan Strait
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
141
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-15
繳交日期
Date of Submission
2018-08-17
關鍵字
Keywords
台灣海峽及南中國海、氣固相分佈、大氣型態汞、時空分佈、長程傳輸路徑
long-range transport, spatiotemporal variation, gas-particle partition, Taiwan Strait and South China Sea, atmospheric speciated mercury
統計
Statistics
本論文已被瀏覽 5630 次,被下載 0
The thesis/dissertation has been browsed 5630 times, has been downloaded 0 times.
中文摘要
台灣地處亞洲大陸之東緣,汞污染物伴隨其他空氣污染物經長程傳輸後,其
影響地區所及除可至日本、韓國,甚至可達夏威夷、美國西岸外,亦可能對台灣
地區造成影響。目前台灣地區已有許多針對大氣汞濃度分佈及境外傳輸影響之相
關研究,針對台灣海峽南部及南中國海北部區域人為污染物時空分佈及傳輸機制
之相關研究尚不多見,且大氣汞在不同海陸域跨境傳輸的量化描述亦尚未定論,
主要為台灣海峽及南中國海海域管轄權之扞格導致南中國海島嶼主權之爭議,致
使台灣及東南亞地區之學者過去較少探討台灣海峽南部及南中國海北部交界區
域的合作研究。
職是之故,本研究旨在針對澎湖群島(台灣海峽南部) 、東沙島(南中國海北
部)及太平島(南中國海南部),同步進行大氣汞之長期採樣,期彌補過去此區域
缺乏大氣型態汞的時空分佈趨勢及長程傳輸資訊。此外,本研究使用NOAAHYSPLIT
Model 逆軌跡模式模擬與全球火點分佈圖(global fire map)推測污染氣
團來源及傳輸路徑分類,探討其受到區域性燃燒源之影響,並且與氣象參數及其
他空氣污染物進行相關性分析與探討。此外,本研究亦與世界各地之大氣汞濃度
監測值加以比較分析。
由各測站大氣汞量測結果得知,台灣海峽及南中國海交界區域季節性氣態元
素汞(GEM)濃度高低依序為:春季>冬季>秋季>夏季,氣態氧化汞(GOM)濃度高
低依序為:夏季>春季>冬季>秋季,顆粒態汞(PHg)濃度高低依序為春季>冬季>
秋季>夏季,而GEM、GOM及PHg平均值濃度分別為2.53±0.73 ng/m3、24.62±7.32
pg/m3、0.21±0.090 ng/m3。最高GEM、GOM 及PHg 濃度均位於澎湖測站,而大
氣汞氣固相分佈則以TGM 為主,TGM 及PHg 分別佔總大氣汞(TAM)的
92.46~96.17%和3.83~8.70%。此外,由氣固相分佈可得知附近是否有人為污染源
的發生。
ii
由逆軌跡模式模擬、火點地圖及氣象監測資料顯示,採樣期間污染氣團主要
來自菲律賓、西太平洋及中國華中,其發生頻率分別佔27.72%、25.71%及25.27%,
而GEM 濃度分別為2.29±0.46ng m-3、2.90±0.53 ng m-3 及2.68±0.55 ng m-3,夏季
期間氣團來自西太平洋,由全球火點分佈圖顯示該區域並無大型燃燒源,因而大
氣汞濃度較其他季節來得低;秋、冬及春季期間則來自中國華北、華中及日本、
韓國地區,氣團挾帶著含汞污染物經季風往南方傳輸,污染氣團先傳輸至大陸華
北沿海地區,出海後再順時針轉向台灣海峽地區,南沙群島地區的氣團則多半從
菲律賓方向傳輸過來。
另與東亞島嶼及世界各主要城市大氣汞濃度比較得知,台灣海峽及南中國海
交界區域,除了南沙群島採樣點大氣汞濃度值接近於北半球大氣背景值外,其餘
兩站大氣汞濃度普遍低於東亞地區之島嶼與中國大陸,但卻高於日本及歐美城市。
Abstract
Taiwan is located at the eastern edge of the Eurasian Continent. Atmospheric
mercury accompaning with other air pollutants could be long-range transported to Japan,
Korea, Hawaii, and even arrived the western coast of North America. It could also move
southward and cause influences on Taiwan. There have been several cooperate on
investigating the concentration distribution of atmospheric speciated mercury and
cross-boundary transport in Taiwan. However, very few studies focus on the
spatiotemporal variation and long-range transport of anthropogenic pollutants in the
region of southern Taiwan Strait and northern South China Sea. The cross-boundary
transport of atmospheric speciated mercury in the sea-land areas has not yet been
quantified, mainly due to the jurisdiction of interested countries in Taiwan Strait and
South China Sea and the dispute over the sovereignty of islands in South China Sea.
Thus, the scholars from Taiwan and Southeast Asian countries have less opportunities
to cooperate on the distribution and long-range transport of atmospheric speciated
mercury in this region.
The objectives of this study was to conduct the simultaneous sampling of
atmospheric speciated mercury in the Penghu Islands (southern Taiwan Strait), the
Dongsha Islands (northern South China Sea) and the Nansha Islands (southern South
China Sea). This study also applied NOAA-HYSPLIT backward trajectories and global
fire maps to plot the transport routs of atmospheric air masses and further correlated
with the meteorological parameters and the criteria air pollutants. Finally, the
atmospheric speciated mercury concentrations measured in this study were compared
with those at major cities and islands in the world.
Field measurement results showed that the seasonal variation of GEM, GOM, and
PHg were ordered as: spring> winter > fall > summer, summer > spring > winter >fall,
and spring> winter> fall> summer, respectively. The average concentration of GEM,
GOM and PHg were 2.53±0.73 ng/m3, 24.62±7.32 pg/m3, and 0.21±0.090 ng/m3,
respectively. The highest GEM, GOM, and PHg concentrations were commonly
observed at the Penghu Islands. Moreover, TGM (=GEM+GOM) was the main mercury
species in the atmospheric mercury, apportioning as 92.46~96.17% TGM and
3.83~8.70% PHg.
Results obtained from backward trajectories, global fire maps, and
meteorological data showed that air masses were mainly came from Philippines,
Western Pacific Ocean, and Central China during the sampling periods, with the
frequencies of 27.72%、25.71% , and 25.27%, respectively, while the concentrations
of GEM were 2.29±0.46, 2.90±0.53, and 2.68±0.55 ng/m3, respectively. Air masses
were blown mainly from the Western Pacific Ocean in summer, resulting in much lower
GEM concentrations than other seasons. In fall, winter, and spring, air masses
originated from northern China, Central China, Japan, and Korea were transported to
the coastal region of northern China and turned clockwisely to the Taiwan Strait due to
cold anticyclone system moved southeasterly. However, air masses were blown mainly
from the Philippines in Nansha Island.
Comparing with East Asian islands and major cities in the world indicated that the
concentrations of atmospheric speciated mercury at the Nansha Islands was close to the
atmospheric mercury background concentration of the Northern Hemisphere, while the
concentrations of atmospheric speciated mercury at other two sampling sites were
generally lower than those in East Asia and mainland China, but higher than those in
Japan, Europe, and the United States.
目次 Table of Contents
目錄
學位論文審定書………………………………………………………….................... i
誌謝……………………………………………………………………………………ii
中文摘要……………………………………………………………………………...iii
英文摘要……………………..……………………………………………………......v
目錄…………………………………………………………………………...…….. vii
圖目錄……………………………………………………………………………..…..x
表目錄………………………………………………………………………...…..... xiii
第一章 前言………………………………………………………………………..…1
1.1 研究緣起………………………………………………………………...….1
1.2 研究目的……………………………………………………………...…….2
1.3 研究範圍與架構……………………………………………………………2
第二章 文獻回顧…………………………………………………………………..…5
2.1 汞的基本特性…………………………………………………….…………5
2.1.1 汞的基本物化特性…………………………………………..…………5
2.1.2 大氣汞的型態及組成特徵…………………………………………..…7
2.2 大氣汞的生成機制及全球循環機制………………………………………..9
2.3 汞的健康危害…………………………………….………………………...13
2.3.1 汞的毒理性質………………………………………...……………….13
2.3.2 汞的暴露危害標準………………………………...………………….17
2.4 大氣汞量測方法…………………………………………………………... 19
2.4.1 大氣汞量測技術演進………………………...…………………….…19
2.4.2 不同型態大氣汞的採樣及分析方法……………………………..…..21
2.5 污染源解析模式之原理及應用…………………………………………...24
2.5.1 逆軌跡模式之基本原理………………………………………………24
2.5.2 逆軌跡模式之應用……………………………………………………25
2.6 國內外大氣汞相關研究…………………………………………………...27
第三章 研究方法……………………………………………………………………33
3.1 大氣汞採樣規劃...…………………………………………………………33
3.1.1 大氣汞採樣地點.…………………………………………….…..……33
3.1.2 大氣汞採樣時間….…………………………………….……..………33
3.2 大氣汞採樣方法.………………………..…………………………………35
3.2.1 TGM 採樣方法.…………………………………………………..……35
3.2.2 GOM 採樣方法.………………………………………………….….…38
3.2.3 PHg 採樣方法……………………………………………………….…41
3.3 大氣汞分析方法.…………………………………………………………..43
3.3.1 TGM 分析方法……….……..……………….…………………...…………..43
3.3.2 GOM 分析方法…….....………………………………………………..45
3.3.3 PHg 分析方法……….…………………………………………………46
3.4 冷蒸氣原子螢光光譜儀量測方法……………………………...…………47
iv
3.5 大氣汞採樣及分析之品保及品管(QA/QC) .……………………………..48
3.5.1 大氣汞採樣及分析人員資格………………………………………….48
3.5.2 大氣汞採樣及分析的品保及品管…………………………………….49
3.6 污染源解析方法.………………………………………………..…………53
3.6.1 逆軌跡模式.……………………………………………………...……53
3.6.2 全球火點分佈.……………………………………...…………………53
第四章 結果與討論.…………………………………………………………..…….55
4.1 南中國海及台灣海峽之氣象條件分析.…………………………………..55
4.1.1 風速及風向.……………………………………………………...……55
4.1.2 氣溫、濕度及降雨量.…………...……………………………………59
4.2 GOM 擴散管的驗證與測試結果.……………………………………….…61
4.2.1 GOM 擴散管空白測試結果.…………………………………..………62
4.2.2 GOM 擴散管穿透率測試結果.………………………………………..63
4.2.3 GOM 擴散管平行比對測試結果.……………………………..………63
4.3 金汞齊的驗證與測試結果.………………………………………………..64
4.3.1 金汞齊空白測試結果.……………………………………...…………64
4.3.2 金汞齊穿透率測試結果…….…………………………………...……65
4.4 南中國海及台灣海峽交界區域大氣型態汞時空分佈.…………………...66
4.4.1 不同型態汞之季節變化趨勢…………………………………….……67
4.4.2 不同型態大氣汞之空間分佈………………………………….…........68
4.4.3 大氣汞氣固相分佈特徵………………....................................……….74
4.4.4 不同季節TGM 及PHg 發生頻率分佈……………..………………...75
4.4.5 南中國海及台灣海峽交界區域例行性採樣濃度趨勢比較…………77
4.5 南中國海及台灣海峽交界區域大氣汞污染來源解析.……………...……81
4.5.1 污染氣團傳輸路徑聚類分析…………………………………....……85
4.5.2 全球火點分佈.………………………………………...………………91
4.5.3 大氣汞濃度、氣象參數及空氣污染物之相關性分析..……………..92
4.6 與世界各地大氣型態汞濃度比較.………………………………………...94
第五章 結論與建議.…………………………………………………….……..…..101
5.1 結論.…………………………………………………….……………..….101
5.2 建議.……………………………………………………………….……...103
參考文獻.……………………………………………………..…………….………104
附錄A 汞標準品體積與溫度關係表…………………...………………………...119
附錄B 不同型態大氣汞量測數據表……………………..………………………122
參考文獻 References
參考文獻
Abbott, M.L., Lin, C.J., Martian, P., and Einerson, J.J., 2008. Atmospheric mercury
near Salmon Falls Creek Reservoir in southern Idaho, Applied Geochemistry, 43,
438-453.
Bloom, N., 1988. Determination of volatile mercury species at the pictogram level by
low-temperature gas chromatography with cold-vapor atomic fluorescence
detection, Analytica Chimica Acta, 208, 151-161.
Boening, D.W., 2000. Ecological effects, transport, and fate of mercury : A general
review, Chemosphere, 40, 1335-1351.
Bothner, M. H., and Robertson, D. E., 1975. Mercury contamination of sea water
samples stored in polyethylene containers. Analytical Chemistry, 47(3), 592-595.
Brooks, S., Luke, W., Cohen, M., Kelly, P., Lefer, B.,and Rappenglück, B. 2010.
Mercury species measured atop the Moody Tower TRAMP site, Houston,
Texas. Atmospheric Environment, 44(33), 4045-4055.
Brown, T. D., Smith, D. N., Hargis Jr, R. A., and O'Dowd, W. J., 1999. Mercury
measurement and its control: what we know, have learned, and need to further
investigate. Journal of the Airand Waste Management Association, 49(6), 1-
97.
Castagna, J., Bencardino, M., D'Amore, F., Esposito, G., Pirrone, N., and Sprovieri, F.,
2018. Atmospheric mercury species measurements across the Western
Mediterranean region: Behaviour and variability during a 2015 research cruise
campaign. Atmospheric Environment, 173, 108-126.
Chan, C. C. and Sadana, R. S., 1993. Automated determination of mercury at ultra trace
level in waters by gold amalgam preconcentration and cold vapour atomic
fluorescence spectrometry. Analytica Chimica Acta, 282(1), 109-115.
Chand, D., Jaffe, D., Prestbo, E., Swartzendruber, P.C., Hafner, W., Penzias, P.W., Kato,
S., Takami, A., Hatakeyama, S., and Kajii, Y., 2008. Reactive and particulate
105
mercury in the Asian marine boundary layer. Atmospheric Environment, 42,
7988-7996.
Cheng, Z., Wang, H. S., Du, J., Sthiannopkao, S., Xing, G. H., Kim, K. W., Yasin,
M.S.M., Hashim, J.H., and Wong, M. H. (2013). Dietary exposure and risk
assessment of mercury via total diet study in Cambodia. Chemosphere, 92(1),
143-149.
Choi, H.D., Holsen, T.M., and Hopke, P.K., 2008. Atmospheric mercury (Hg) in the
adirondacks: Concentrations and sources, Environmental Science and
Technology, 42(15), 5644-5653.
Choi, H. D., Huang, J., Mondal, S., and Holsen, T. M., 2013. Variation in concentrations
of three mercury (Hg) forms at a rural and a suburban site in New York
State. Science of the Total Environment, 448, 96-106.
Crowe, W., Allsopp, P. J., Watson, G. E., Magee, P. J., Strain, J. J., Armstrong, D. J.,
Ball, E., and McSorley, E. M., 2017. Mercury as an environmental stimulus in the
development of autoimmunity–A systematic review. Autoimmunity Reviews,
16(1), 72-80.
Díez, S., Montuori, P., Pagano, A., Sarnacchiaro, P., Bayona, J. M., and Triassi, M.,
2008. Hair mercury levels in an urban population from southern Italy: fish
consumption as a determinant of exposure. Environment International, 34(2),
162-167.
Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., and Pirrone, N., 2013. Mercury
as a global pollutant: sources, pathways, and effects. Environmental Science and
Technology, 47(10), 4967-4983.
Duan, L., Wang, X., Wang, D., Duan, Y., Cheng, N., and Xiu, G., 2017. Atmospheric
mercury speciation in Shanghai, China. Science of The Total Environment, 578,
460-468.
Dumarey, R., Heindryckx, R., Dams, R., and Hoste, J., 1979. Determination of volatile
mercury compounds in air with the coleman mercury analyzer system. Analytica
106
Chimica Acta, 107, 159-167.
Ebdon, L., Wilkinson, J. R., and Jackson, K. W., 1981. Determination of sub-nanogram
amounts of mercury by cold-vapour atomic fluorescence spectrometry with an
improved gas-sheathed atom cell. Analytica Chimica Acta, 128, 45-55.
Ebinghaus, R., Kock, H.H., Coggins, A.M., Spain, T.G. Jennings, S.G., and Temme, C.,
2002. Long-term measurements of atmospheric mercury at Mace Head, Irish West
Coast between 1995 and 2001,” Atmospheric Environment., 36, 5267-5276.
Ebinghaus, R. and Kock, H. H., 1999. Factors affecting the measurement of
mercury. Journal of Geophysical Research, 104(D17), 21-859.
Fang, G. C., Huang, W. C., Zhuang, Y. J., Huang, C. Y., Tsai, K. H., and Xiao, Y. F.
(2018). Wet depositions of mercury during plum rain season in
Taiwan. Environmental geochemistry and health, 1-7.
Fang, G. C., Tsai, K. H., Huang, C. Y., Yang, K. P. O., Xiao, Y. F., Huang, W. C., and
Zhuang, Y. J. (2018). Seasonal variations of ambient air mercury species nearby
an airport. Atmospheric Research, 202, 96-104.
Feng, X.B., Sommar, J.G., and Gardfeldt, K., 2000. Improved detection of gaseous
divalent mercury in ambient air using KCl coated denuders, Analytical and
Bioanalytical Chemistry, 366, 423-428.
Fitzgerald, W. F. and Gill, G. A., 1979. Subnanogram determination of mercury by twostage
gold amalgamation and gas phase detection applied to atmospheric
analysis. Analytical Chemistry, 51(11), 1714-1720.
Friedli, H.R., Radke, L.F., Prescott, R., Li, P., Woo, J.H., and Carmichael, G.R.,2004
Mercury in the atmosphere around Japan, Korea, and China as observed during
the 2001 ACE-Asia field campaign: Measurements, distributions, sources, and
implications. Journal of Geophysical Research, 109, D19S25.
Fu, X., Feng, X., Sommar, J., and Wang, S., 2012. A review of studies on atmospheric
mercury in China. Science of The Total Environment, 421, 73-81.
Fu, X.W., Feng, X.B., Zhu W.Z., Zheng W., and Wang S.F., 2008. Total particulate
107
and reactive gaseous mercury in ambient air in the eastern slope of Mt. Gongga
area, Applied Geochemistry., 23(3), 408-418.
Fu, X.W., Feng, X.B., Wang, S.F., Rothenberg, S., Shang, L.H., Li, L. and Qiu, G.,
2009. Temporal and spatial distributions of total gaseous mercury concentrations
in ambient air in a mountainous area in southwestern China: implications for
industrial and domestic mercury emissions in remote areas in China, Science of
The Total Environment., 407, 2306-2314.
Fu, X.W., Feng, X., Liang, P., Deliger, Zhang, H. Ji, J., and Liu. P., 2012. Temporal
trend and sources of speciated atmospheric mercury at Waliguan GAW station,
Northwestern China, Atmospheric Chemistry and Physics, 12, 1951-1964.
Fu, X.W., Zhang, H., Yu, B., Wang, X., Lin, C.J., Feng, X.B., 2015. Observations of
atmospheric mercury in China: A critical review. Atmospheric Chemistry and
Physics, 15, 9455-9476.
Gabriel, M. C., Williamson, D. G., Brooks, S., and Lindberg, S., 2005. Atmospheric
speciation of mercury in two contrasting Southeastern US airsheds. Atmospheric
Environment, 39(27), 4947-4958.
Gustin, M. and Jaffe, D., 2010. Reducing the uncertainty in measurement and
understanding of mercury in the atmosphere, Environmental Scienceand
Technology, 44(7), 2222-2227.
Han, Y.J., Kim, J.E., Kim, P.R., Kim, W.J., Yi, S.M., Seo, Y.S., and Kim, S.H., 2014.
General trends of atmospheric mercury concentrations in urban and rural areas in
Korea and characteristics of high-concentration events. Atmospheric
Environment, 94, 754-764.
Holmes, C. D., Jacob, D. J., Mason, R. P., and Jaffe, D. A., 2009. Sources and deposition
of reactive gaseous mercury in the marine atmosphere. Atmospheric
Environment, 43(14), 2278-2285.
Huang, J., Liu, C.K., Huang, C.S., and Fang, G.C., 2012. Atmospheric mercury
108
pollution at an urban site in central Taiwan: Mercury emission sources at ground
level, Chemosphere, 87, 579-585.
Hylander, L. D., 2001. Global mercury pollution and its expected decrease after a
mercury trade ban. Water, Air, and Soil Pollution, 125(1), 331-344.
Hylander, L. D., 2002. Determination of parameters influencing methylation and
demethylation in tropical lakes in Brazil and Nicaragua. Highlights and
Achievements (No. NAHRES--69).
Hylander, L.D. and Meili, M., 2003. 500 years of mercury product: Global annual
inventory by region until 2000 and associated emissions, Science of The Total
Environment, 304, 13-27.
Jaffe, D., Prestbo, E., Swartzendruber, P., Penzias, P.W., Kato, S., Takami, A.,
Hatakeyama, S., and Kajii, Y., 2005. Export of atmospheric mercury from Asia,
Atmospheric Environment, 39, 3029-3038.
Jen, Y.S., Yuan, C.S., Lin, Y.C., and Lee, C.G., 2010. Tempospatial partition of gaseous
elemental mercury (GEM) and particulate mercury (PM) at background and
heavily polluted urban sites in Kaohsiung City, A&WMA International
Specialty Conference, Xi'an., China, May 10-14.
Jen, Y. S., Chen, W. H., Hung, C. H., Yuan, C. S., and Ie, I. R., 2014. Field measurement
of total gaseous mercury and its correlation with meteorological parameters and
criteria air pollutants at a coastal site of the Penghu Islands, Aerosol and Air
Quality Research., 14, 364-375.
Jiang, Y., Cizdziel, J.V., and Lu, D., 2013. Temporal patterns of atmospheric mercury
species in northern Mississippi during 2011–2012: Influence of sudden population
swings, Chemosphere, 93, 1694-1700.
Johnson, D. L. and Braman, R. S., 1974. Distribution of atmospheric mercury species
near ground. Environmental Science and Technology, 8(12), 1003-1009.
109
Karatza, D., Lancia, A., Musmarra, D., and Zucchini, C., 2000. Study of mercury
absorption and desorption on sulfur impregnated carbon. Experimental Thermal
and Fluid Science, 21(1), 150-155.
Karthik, R., Paneerselvam, A., Ganguly, D., Hariharan, G., Srinivasalu, S., Purvaja, R.,
and Ramesh, R., 2017. Temporal variability of atmospheric total gaseous mercury
and its correlation with meteorological parameters at a high-altitude station of the
South India. Atmospheric Pollution Research, 8(1), 164-173.
Kentisbeer, J., Leeson, S., Malcolm, H., Leith, I., and Cape, J. N., 2013. An overview
of atmospheric mercury monitoring at Auchencorth Moss, the UK EMEP
Supersite in southern Scotland: trends, patterns and a source analysis. In E3S Web
of Conferences (Vol. 1). EDP Sciences.
Kilgroe, J. D., 1996. Control of dioxin, furan, and mercury emissions from municipal
waste combustors. Journal of Hazardous Materials, 47(1-3), 163-194.
Kim, J. P. and Fitzgerald, W. F., 1986. Sea-air partitioning of mercury in the equatorial
Pacific Ocean. Science, 231, 1131-1134.
Kim, K. H., Ebinghaus, R., Schroeder, W. H., Blanchard, P., Kock, H.H., Steffen, A.,
Froude, F.A., and Kim, J. H., 2005. Atmospheric mercury concentrations from
several observatory sites in the Northern Hemisphere. Journal of Atmospheric
Chemistry, 50(1), 1-24.
Kim, K. H., Brown, R. J., Kwon, E., Kim, I. S., and Sohn, J. R., 2016. Atmospheric
mercury at an urban station in Korea across three decades. Atmospheric
Environment, 131, 124-132.
Kock, H. H., Bieber, E., Ebinghaus, R., Spain, T. G., and Thees, B., 2005. Comparison
of long-term trends and seasonal variations of atmospheric mercury concentrations
at the two European coastal monitoring stations Mace Head, Ireland, and Zingst,
Germany. Atmospheric Environment, 39(39), 7549-7556.
Krabbenhoft, D. P., and Sunderland, E. M., 2013. Global change and
mercury. Science, 341(6153), 1457-1458.
Kudo, A., Fujikawa, Y., Miyahara, S., Zheng, J., Takigami, H., Sugahara, M., and
110
Muramatsu, T., 1998. Lessons from Minamata mercury pollution, Japan-after a
continuous 22 years of observation. Water Science and Technology, 38(7), 187-
193.
Laurier, F. J. G., Mason, R. P., Gill, G. A., and Whalin, L., 2004. Mercury distributions
in the North Pacific Ocean-20 years of observations. Marine Chemistry, 90(1),
3-19.
Le, D. Q., Tanaka, K., Dung, L. V., Siau, Y. F., Lachs, L., Kadir, S. T. S. A.,
Sano, Y., and Shirai, K. (2017). Biomagnification of total mercury in the
mangrove lagoon foodweb in east coast of Peninsula, Malaysia. Regional
Studies in Marine Science, Vol.16, pp.49-55.
Liang, J., Feng, C., Zeng, G., Zhong, M., Gao, X., Li, X., Fang, Y, and Mo, D.
(2017). Atmospheric deposition of mercury and cadmium impacts on
topsoil in a typical coal mine city, Lianyuan, China. Chemosphere, 189,
198-205.
Lin, C. J. and Pehkonen, S. O., 1999. The chemistry of atmospheric mercury: a
review. Atmospheric Environment, 33(13), 2067-2079.
Lindberg, S. E., Meyers, T. P., Taylor, G. E., Turner, R. R., and Schroeder, W. H., 1992.
Atmosphere‐surface exchange of mercury in a forest: Results of modeling and
gradient approaches. Journal of Geophysical Research: Atmospheres, 97(D2),
2519-2528.
Lindberg, S. A. and Stratton, W. J., 1998. Atmospheric mercury speciation:
concentrations and behavior of reactive gaseous mercury in ambient
air. Environmental Science and Technology, 32(1), 49-57.
Lindberg, S. E., Wallschlaeger, D., Prestbo, E. M., Bloom, N. S., Price, J., and Reinhart,
D., 2001. Methylated mercury species in municipal waste landfill gas sampled in
Florida, USA. Atmospheric Environment, 35(23), 4011-4015.
Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W.,
111
Pirrone, N., Prestbo, E., and Seigneur, C., 2007. A synthesis of progress and
uncertainties in attributing the sources of mercury in deposition. AMBIO:
Journal of the Human Environment, 36(1), 19-33.
Lindqvist, H.O. and Rodhe, H., 1985. Atmospheric merucry-A review, Tellus, 27B,
136-159.
Liu, B., Keeler, G. J., Dvonch, J. T., Barres, J. A., Lynam, M. M., Marsik, F. J., and
Morgan, J. T., 2007. Temporal variability of mercury speciation in urban
air. Atmospheric Environment, 41(9), 1911-1923.
Liu, B., Keeler, G. J., Dvonch, J. T., Barres, J. A., Lynam, M. M., Marsik, F. J., and
Morgan, J. T., 2010. Urban–rural differences in atmospheric mercury
speciation. Atmospheric Environment, 44(16), 2013-2023.
Liu, S.L., Nadim, F., Perkins, C., Carley, R. J., Hoag, G. E., and Lin, Y. H. 2002.
Atmospheric mercury monitoring survey in Beijing, China. Chemosphere, 48:
97-107.
Lu, J. Y. and Schroeder, W. H., 2004. Annual time‐series of total filterable atmospheric
mercury concentrations in the Arctic. Tellus B, 56(3), 213-222.
Lutter, R., and Irwin, E., 2002. Mercury in the environment: A volatile
problem. Environment: Science and Policy for Sustainable Development, 44(9),
24-40.
Lyman, S. N. and Gustin, M. S., 2009. Determinants of atmospheric mercury
concentrations in Reno, Nevada, USA. Science of the Total
Environment, 408(2), 431-438.
Manning, D. C., 1970. Non-flame methods for mercury determination by atomic
absorption absorption-A review. Atomic Absorption Newsletter, 9(5), 97–99.
Marumoto, K., Sudo, Y., and Nagamatsu, Y. (2017). Collateral variations between the
concentrations of mercury and other water soluble ions in volcanic ash samples
and volcanic activity during the 2014–2016 eruptive episodes at Aso volcano,
Japan. Journal of Volcanology and Geothermal Research, 341, 149-157.
Mason, R. P., Fitzgerald, W. F., and Morel, F. M., 1994. The biogeochemical cycling of
112
elemental mercury: anthropogenic influences. Geochimica et Cosmochimica
Acta, 58(15), 3191-3198.
Munthe, J., Angberg, I. W., Pirrone, N., Ivefeldt, Å ., Ferrara, R., Ebinghaus, R., Feng,
X., Gårdfeldt, K., Lanzillotta, G. K. E., Lindberg, S.E., Lu, J., Mamane, Y., Prestbo,
E., Schmolke, S., Schroeder, W. H., Sommer, J., Sprovieri, F., Stevens, R.K.,
Stratton, W., Tuncel, G., and Urba, A., 2001. Intercomparison of methods for
sampling and analysis of atmospheric mercury species, Atmospheric
Environment, 35, 3007-3017.
Muscat, V. I., Vickers, T. J., and Andren, A., 1972. Simple and versatile atomic
fluorescence system for determination of nanogram quantities of
mercury. Analytical Chemistry, 44(2), 218-221.
Pacyna, E.G., Pacyna, J.M., Steenhuisen, F., and Simon, W., 2006. Global
anthropogenic mercury emission inventory for 2000. Atmospheric Environment,
40, 4048e4063
Pacyna, E.G., Pacyna, J.m., Sundseth, J., Munthe, J., Kindbom, K., Wilson, S.,
Steenhuisen, F., and Maxson, P., 2010. Global emission of mercury to the
atmospheric from anthropogenic sources projections to 2020, Atmospheric
Environment, 44, 2487-2499.
Park, J. D. and Zheng, W., 2012. Human exposure and health effects of inorganic and
elemental mercury. Journal of Preventive Medicine and Public Health, 45(6),
344-352.
Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason,
R., Mukherjee, A.B., Stracher, G.B., and Telmer, K., 2010. Global mercury
emissions to the atmosphere from anthropogenic and natural
sources. Atmospheric Chemistry and Physics, 10(13), 5951-5964.
Poissant, L., Pilote, M., Beauvais, C., Constant, P., and Zhang, H.H., 2005. A year of
continuous measurements of three atmospheric mercury species (GEM, RGM and
Hgp) in southern Québec, Canada, Atmospheric Environment, 39, 1275-1287.
113
Richard, J.C.B., Sharon L.G., David, M.B., Andrew, S.B., Chris, R., Chantal, L.M., and
Elizabeth, A.M., 2015. Ten years of mercury measurement at urban and industrial
air quality monitoring stations in the UK, Atmospheric Environment, 109, 1-8.
Risch, M. R., DeWild, J. F., Gay, D. A., Zhang, L., Boyer, E. W., and Krabbenhoft, D.
P., 2017. Atmospheric mercury deposition to forests in the eastern
USA. Environmental Pollution, 228, 8-18.
Rutter, A. P., Snyder, D. C., Stone, E. A., Schauer, J. J., Gonzalez-Abraham, R., Molina,
L. T., Cardenas, B., and Foy, B. D., 2009. In situ measurements of speciated
atmospheric mercury and the identification of source regions in the Mexico City
Metropolitan Area. Atmospheric Chemistry and Physics, 9(1), 207-220.
Sakata, M. and Marumoto, K., 2002. Formation of atmospheric particulate mercury in
the Tokyo metropolitan area. Atmospheric Environment, 36(2), 239-246.
Schroeder, W.H., Yarwood, G., and Niki, H., 1991 Transformation processes involving
mercury species in the atmosphere - Results from a literature survey. Water, Air,
and Soil Pollution, 56, 653-666.
Schroeder, W. H., and Munthe, J., 1998. Atmospheric mercury-An
overview. Atmospheric Environment, 32(5), 809-822.
Schuster, E., 1991. The behavior of mercury in the soil with special emphasis on
complexation and adsorption processes-A review of the literature, Water, Air,and
Soil Pollution, 56, 667-680.
Sheu, G.R. and Mason, R.P., 2001. An examination of methods for the measurements
of reactive gaseous mercury in the atmosphere. Environmental Scienceand
Technology, 35(6), 1209-1216.
Sheu, G.R., Mason, R.P., and Lawson, N.M., 2002. Speciation and distribution of
atmospheric mercury over the northern Chesapeake Bay. Chemicals in the
Environment, 12, 223-242.
Sheu, G.R., Lin, N.H., Wang, J.L., Lee, C.T., Ou-Yang, C.F., and Wang, S.H., 2010.
Temporal distribution and potential sources of atmospheric mercury measured at
a high-elevation background station in Taiwan, Atmospheric Environment, 44,
114
2393-2400.
Sheu, G. R., Lin, N.H., Lee, C.T., Wang, J.L., Chuang, M.T., Wang, S.H., Chi, K.H.,
and Ou-Yang, C. F., 2013. Distribution of atmospheric mercury in northern
Southeast Asia and South China Sea during Dongsha experiment. Atmospheric
Environment, 78, 174-183.
Shimomura, S., 1989. Analytical behavior and some physical properties of mercury -A
Review. Analytical Sciences, 5(6), 633-639.
Siudek, P., Kurzyca, I., and Siepak, J., 2016. Atmospheric deposition of mercury in
central Poland: sources and seasonal trends. Atmospheric Research, 170, 14-22.
Slemr, F., Schuster, G., and Seiler, W., 1985 Distribution, speciation and budget of
atmospheric mercury. Journal of Atmospheric Chemistry, 3, 407-434.
Slemr, F., Seiler, W., and Schuster, G., 1981. Latitudinal distribution of mercury over
the Atlantic Ocean. Journal of Geophysical Research: Oceans, 86(C2), 1159-
1166.
Sprovieri, F., Hedgecock, I. M., and Pirrone, N., 2010. An investigation of the origins
of reactive gaseous mercury in the Mediterranean marine boundary
layer. Atmospheric Chemistry and Physics, 10(8), 3985-3997.
Subir, M., Ariya, P. A., and Dastoor, A. P., 2011. A review of uncertainties in
atmospheric modeling of mercury chemistry I. Uncertainties in existing kinetic
parameters–Fundamental limitations and the importance of heterogeneous
chemistry. Atmospheric environment, 45(32), 5664-5676.
Sunderland, E.M., Krabbenhoft, D.P., Moreau, J.W., Strode, S.A., and Landing, W.M.,
2009. Mercury sources, distribution, and bioavailability in the North Pacific Ocean:
Insights from data and models, American Geophysical Union.
Ure, A. M., 1975. The determination of mercury by non-flame atomic absorption and
fluorescence spectrometry: A review. Analytica Chimica Acta, 76(1), 1-26.
Valente, R. J., Shea, C., Humes, K. L., and Tanner, R. L. (2007). Atmospheric mercury
in the Great Smoky Mountains compared to regional and global
levels. Atmospheric Environment, 41(9), 1861-1873.
115
Wan, Q., Feng, X, B., Lu, J., Zheng, W., Song, X, J., Han, S, J., and Xu, H., 2009.
Atmospheric mercury in Changbai Mountain area, northeastern China I. The
seasonal distribution pattern of total gaseous mercury and its potential sources.
Environmental Research, 109, 201-206.
Wang, Y.M., Wang, D.Y., Meng, B., Peng, Y.L., Zhang, L., and Zhu, J.S., 2012a. Spatial
and temporal distributions of total and methyl mercury in precipitation in core
urban areas, Chongqing, China. Atmospheric Chemistry and Physics
Discussions, 12, 10243-10272.
Wang, F., Macdonald R.W., Armstrong D.A. and Stern G.A., 2012b. Total and
methylated mercury in the Beaufort Sea: The role of local and recent organic
remineralization. Environmental Science and Technology, 46, 11821-11828.
Wang, Chunjie., Ci, Zhijia., Wang, Zhangwei., Zhang, Xiaoshan., and Guo, Jia., 2016.
Speciated atmospheric mercury in the marine boundary layer of the Bohai Sea and
Yellow Sea. Atmospheric Environment, 131, 360-370.
Wang, Z., Zhang, X., Chen, Z., and Zhang, Y., 2006. Mercury concentrations in sizefractionated
airborne particles at urban and suburban sites in Beijing, China.
Atmospheric Environment, 40, 2194-2201.
Weiss-Penzias, P., Jaffe, D. A., McClintick, A., Prestbo, E. M., and Landis, M. S., 2003.
Gaseous elemental mercury in the marine boundary layer: Evidence for rapid
removal in anthropogenic pollution. Environmental Science and
Technology, 37(17), 3755-3763.
Winefordner, J. D. and Vickers, T. J., 1964. Atomic fluorescence spectroscopy as a
means of chemical analysis. Analytical Chemistry, 36(1), 161-165.
Yoshimoto, N., Takaoka, M., Fujimori, T., Oshita, K., Sakai, N., and Kdir, S. A.
S. A., 2016. Substance flow analysis of mercury in Malaysia. Atmospheric
Pollution Research, Vol.7 (5), pp.799-807.
116
Yu, L.P. and Yan, X.P., 2003. Factors affecting the stability of inorganic and
methylmercury during sample storage, Trends in Analytical Chemistry, 22, 245-
253.
Yuan, C. S., Lin, H. Y., Wu, C. H., Liu, M. H., and Hung, C. H., 2004. Preparation of
sulfurized powdered activated carbon from waste tires using an innovative
compositive impregnation process. Journal of Air and Waste Management
Association, 54(7), 862-870.
Zhang, H. A. and Lindberg, S. E., 1999. Processes influencing the emission of mercury
from soils: A conceptual model. Journal of Geophysical Research:
Atmospheres, 104(D17), 21889-21896.
Zhang, H., Fu, X. W., Lin, C. J., Wang, X., and Feng, X. B., 2015. Observation and
analysis of speciated atmospheric mercury in Shangri-La, Tibetan Plateau,
China. Atmospheric Chemistry and Physics, 15(2), 653-665.
Zhang, Z. Y., Wong, M. S., and Lee, K. H., 2015. Estimation of potential source regions
of PM 2.5 in Beijing using backward trajectories. Atmospheric Pollution
Research, 6(1), 173-177.
Zielonka, U., Hlawiczka, S., Fudala, J., Wängberg, I., and Munthe, J., 2005. Seasonal
mercury concentrations measured in rural air in Southern Poland: Contribution
from local and regional coal combustion. Atmospheric Environment, 39(39),
7580-7586.
Agency for Toxic Substances and Disease Registry (ATSDR), 1999. Toxicological
profile for mercury, U.S. Department of Health and Human Services, March.
Mercury - ToxFAQs™,National Environmetal Health Research Center (國家環境毒
物研究中心),1999。
NOAA Air Resources Laboratory: http://ready.arl.noaa.gov/HYSPLIT.php
NASA FIRMS Web Fire Mapper: https://firms.modaps.eosdis.nasa.gov/firemap/
117
UNEP Global Mercury Assessment, 2013.
UNEP Mercury Time to Act, 2013.
馮新斌,2003。“大氣活性氣態汞採樣和分析方法”,分析化學研究簡報。
李佳樺,2004,東亞大氣汞之長程輸送研究:雲水中汞之定量分析與指紋建立,
國立中央大學化學研究所碩士論文
李仲根,2007 “大氣中不同形態汞的採樣和分析方法”,中國環境監測。顏晟容,
“台灣地區汞之物質流分析及其衝擊評估”,臺北科技大學環境工程與管理研
究所學位論文,2011。
許桂榮,亞洲大氣污染物之長程輸送與衝擊研究-第二期--長程輸送大氣汞之乾濕
沈降監測(Ⅰ)(Ⅱ),國科會專題研究計畫,2007-2009。
劉乙琦,2008 “澎湖地區之亞洲沙塵物化特性分析及沙塵來源解析”,國立中
山大學環境工程研究所碩士論文。
竇紅穎,2009 “長三角背景地區秋冬季節大氣氣態總汞含量特徵研究”,中國
環境科學,第34 卷,第1 期。
李宗璋,2009 “金廈地區懸浮微粒物化特性分析及污染源解析探討”,國立中山大
學環境工程研究所碩士論文。
許桂榮,2013 “持久性有機污染物管制研討會摘要”,國立中央大學
林達偉,2014“鹿林山大氣汞分布與乾濕沉降特徵及來源推估”,國立中央大學
大氣物理研究所碩士論文
張億閔,2014 “台灣海峽周邊地區大氣汞時空分佈及污染來源解析”,國立中山大
學環境工程研究所碩士論文。
陳帝文,2015 “澎湖群島大氣汞污染物濃度時空分佈及化學特徵分析”,國立中山
大學環境工程研究所碩士論文。
周政皓,2015“南台灣工業都市及背景地區高污染期間大氣汞成分之時空分佈
及污染源解析”,國立中山大學環境工程研究所碩士論文。
蔡孟延,2016“台灣海峽及南海交界區域不同型態大氣汞污染物時空變化及傳輸
路徑分類探討”,國立中山大學環境工程研究所碩士論文。
118
陳靜,2016“石家莊一次沙塵氣溶膠污染過程及光學特性”,中國環境科學, 36(4),
979-989.
陳亭碩,2017“菲律賓北部與台灣南部不同大氣汞污染物時空分布與長程傳輸”,
國立中山大學環境工程研究所碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code