Responsive image
博碩士論文 etd-0717118-165839 詳細資訊
Title page for etd-0717118-165839
論文名稱
Title
低溫環境下CeO2/TiO2與CeO2/WO3/TiO2對氣態元素汞之氧化效率提升及其反應機制探討
Enhancement of Oxidation Efficiency of Elemental Mercury by CeO2/TiO2 and CeO2/WO3/TiO2 at Low Temperatures Governed by Different Mechanisms
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
189
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-19
繳交日期
Date of Submission
2018-08-17
關鍵字
Keywords
元素汞(Hg0)、CeO2/TiO2光熱觸媒、光熱催化氧化、較低溫環境、操作參數、L-H反應動力模式
CeO2/TiO2, L-H kinetic model, oxidation efficiency of elemental mercury (Hg0), photothermal catalytic oxidation, operating parameters
統計
Statistics
本論文已被瀏覽 5654 次,被下載 0
The thesis/dissertation has been browsed 5654 times, has been downloaded 0 times.
中文摘要
汞及其化合物、氮氧化物為燃煤電廠排放的主要氣態污染物,對生態環境及人體健康均會產生巨大危害,而燃煤電廠是Hg0排放量最大的固定污染源,故利用燃煤電廠現有空氣污染控制設備去除Hg0,可達到降低投資費用及營運成本而又可提高空氣污染物去除效率之目標。其中又以提高SCR的除汞效率成為多重污染物聯合處理的主要方法之一。然而現有SCR 最適反應溫度範圍為300-400℃,故須設置於靜電集塵器之前端,但煙道氣內高濃度粒狀物的遮蔽效應(masking effects),則會降低SCR 對Hg0之去除效能。因此,本研究旨在結合熱催化及光催化技術,製備適用於100-200℃ 之光熱觸媒,研發較低溫環境之嶄新Hg0去除技術。
本研究分成五個部分:第一部分為文獻的蒐集與彙整,內容包含TiO2的改質及製備、光熱催化氧化Hg0之相關研究;第二部分應用溶膠凝膠法(sol-gel)製備TiO2、CeO2/TiO2、WO3/CeO2/TiO2光熱觸媒,並進行表面特徵分析(如:SEM、EDS、BET、XRD、XPS、PL、FTIR等);第三部分則建立光熱催化氧化反應系統及Hg0在線測量系統,並建立相關品保及品管(QA/QC)作業程序,確保反應系統內各污染氣體濃度量測之準確度;第四部分探討模擬在較低溫度(100-200℃)環境下,主要操作參數對Hg0光熱催化之影響,例如:反應溫度、Hg0進流濃度對Hg0光熱催化氧化效率之影響、多重氣體成份對Hg0之去除;第五部份則應用L-H反應動力模式模擬不同改質光熱觸媒光熱催化Hg0之反應速率常數。
研究結果顯示,利用溶膠凝膠法所製備之TiO2樣品以銳鈦礦 (anatase)為主(佔80%以上),而XPS發現Ce多以Ce4+的形態存在,經EDS分析TiO2表面的Ce含量隨製備過程中Ce添加量的增加而呈線性上升。光熱催化氧化Hg0實驗測試結果顯示,在100-200℃溫度條件下,CeO2/TiO2對Hg0具有較高的氧化效率,可將原本30-60%之低氧化效率提升至90%以上之高氧化效率,並且隨著CeO2添加量的提高,對Hg0光熱催化氧化效率亦隨之上升,利用L-H反應動力模式,計算反應平衡常數(KHg0),發現反應平衡常數會隨反應溫度上升而下降,這與實驗結果溫度上升Hg0氧化效率下降的趨勢一致,最後進行污染氣體分析,分別將光熱觸媒在300 ppm的NO與300 ppm的SO2氛圍下,分別進行光熱催化氧化Hg0反應的探討,結果顯示在NO氛圍下7% CeO2/TiO2的光熱催化氧化效率大於3% WO3/7% CeO2/TiO2,但隨著溫度的上升,其效率呈現明顯下降,而在300 ppm的SO2氛圍下對光熱催化氧化Hg0效率隨溫度上升有明顯的下降,但3%WO3/7
Abstract
Mercury and its derivatives as well as NOx are the major air pollutants emitted from coal-fired power plants, which could cause seriously adverse impact on the ecological system and human health. The simultaneous removal of Hg0 and NOx by the installed air pollution control devices (APCDs) could not only reach high removal efficiency of air pollutants but also reduce the installation and operational cost. One of the most potential technologies for multi-pollutant removal is to remove Hg0 by SCR. However, the current SCR has an optimum reaction temperature range of 300-400°C, which must place it in the front of ESP. However the masking effect of high-concentration particles in the flue gas reduces the removal efficiency of Hg0 by SCR. Accordingly, this study aims to combine thermo-catalysis and photocatalysis to prepare a new photothermal catalyst suitable for 100-200°C, for developing an innovative Hg0 removal technology in a lower temperature environment.
  This study was conducted in five phase: The first phase was literature, including reviewing the modification and preparation of TiO2, and the photothermal catalytic oxidation of Hg0. The second phase applied sol-gel method to prepare TiO2, CeO2/TiO2 and WO3/CeO2/TiO2 photothermal catalysts, and characterized surface properties by SEM, EDS, BET, XRD, XPS, PL and FTIR. The third phase established a photothermal catalytic reactor and an Hg0 online measurement system. A quality assurance and quality control (QA/QC) procedure was established to ensure the accuracy of Hg0 measurement. The fourth phase investigated the effects of operating parameters on Hg0 photothermal catalysis at lower temperature (100-200 °C). The operating parameters included reaction temperature, influent Hg0 concentration, and pollutant gas components. The fifth phas simulated the reaction rate constant of Hg0 L-H reaction kinetic model.
  Experimental results indicated that the TiO2 prepared by sol-gel method was mainly anatase (>80%). XPS showed that Ce mostly existed in the form of Ce4+, while EDS Ce content on the surface of TiO2 that the increased linearly with the increase of Ce addition during the preparation procedure. Photothermal catalytic oxidation results indicated that CeO2/TiO2 has higher oxidation efficiency of Hg0 at 100-200 °C, and increased from 30-60% to >90%. With the increase of CeO2 added, the photothermal catalytic oxidation of Hg0 increased. Simulated by L-H kinetic model, the reaction equilibrium constant (KHg0) was determined, and KHg0 decreased with reaction temperature, which concurred with the trend of the Hg0 oxidation efficiency of the experimental results. Finally, the photothermal catalytic oxidation of Hg0 was carried out in the atmosphere of 300 ppm NO and 300 ppm SO2, respectively. The results showed that the photothermal catalytic oxidation efficiency of Hg0 by 7% CeO2/TiO2 was higher than that by 3% WO3/7% CeO2/TiO2 in NO atmosphere, but its oxidation efficiency decreased with temperature. The photothermal catalytic oxidation of Hg0 decreased significantly with reaction temperature in the atmosphere of 300 ppm SO2, but the decrease of 3% WO3/7% CeO2/TiO2 was less than 7% CeO2/TiO2, since WO3 has better sulfur resistance.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
Abstract v
目錄 vii
圖目錄 xi
表目錄 xvi
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 3
1-3 研究流程 3
第二章 文獻回顧 5
2-1 汞及其化合物的物化特性與健康危害 5
2-2 汞的排放來源、傳輸與分佈 7
2-3 燃煤電廠之汞污染物的型態與控制 9
2-3-1 燃煤電廠之汞污染物型態與分佈 9
2-3-2 燃煤電廠含汞污染物的控制技術 11
2-4 光觸媒的催化特性 13
2-4-1 光觸媒的種類 13
2-4-2 二氧化鈦結構及特性 14
2-4-3 光熱觸媒之光熱催化反應機制 15
2-4-4 光觸媒表面吸附現象 20
2-5 二氧化鈦製備 22
2-6 金屬改質 TiO2 光熱催化氧化 Hg0 之機制探討 25
2-7 反應溫度對二氧化鈦之影響 26
2-8 反應濃度對二氧化鈦之影響 28
2-9 不同氣體成份對光熱催化氧化反應的動力模式探討 29
2-10 TiO2 光熱催化 Hg0 之探討 32
2-11 改質光熱觸媒除汞研究現況 35
第三章 研究方法 43
3-1 實驗規劃設計與流程 43
3-2 實驗材料與觸媒製備方法 43
3-2-1 實驗材料 43
3-2-2 光熱觸媒製備方法 44
3-2-2-1 溶膠凝膠法製備 TiO2 與 TiO2 塗覆於玻璃珠 44
3-2-2-2 溶膠凝膠法製備改質 TiO2 45
3-3 分析儀器與實驗設備 45
3-3-1 表面特徵分析儀器 45
3-3-1-1 掃描式電子顯微鏡(SEM)及能量分散式光譜儀(EDS) 45
3-3-1-2 穿透式電子顯微鏡(TEM) 45
3-3-1-3 X-射線繞射分析儀(XRD) 46
3-3-1-4 化學分析影像能譜儀(XPS) 47
3-3-1-5 BET 比表面積分析儀 47
3-3-1-6 微光致螢光光譜儀(PL) 49
3-3-1-7 傅立葉轉換紅外光譜(FTIR) 49
3-3-2 光熱催化反應系統 50
3-3-3 操作參數與範圍 51
3-4 系統穩定實驗 52
3-5 反應停留時間估算 54
3-6 載體披覆觸媒量估算 55
3-7 系統空白實驗 55
第四章 結果與討論 57
4-1 光熱觸媒表面特徵分析結果 57
4-1-1 TEM、SEM、EDS 表面特徵分析 57
4-1-2 XRD 晶型結構分析 78
4-1-3 SSAA 比表面積分析 80
4-1-4 XPS 化學型態分析 80
4-1-5 PL 表面特徵分析 83
4-1-6 FTIR 成份分析 86
4-2 TiO2 與 CeO2/TiO2 對 Hg0 光熱催化氧化效率之影響 87
4-2-1 反應溫度對 TiO2 及 CeO2/TiO2 對 Hg0 光熱催化氧化效率之影響 87
4-2-2 不同 CeO2 添加量對光熱催化氧化 Hg0 之影響 89
4-3 光熱催化反應動力學模式 89
4-4 多重氣體成份對光熱催化氧化效率之影響 93
4-4-1 污染氣體成份 NO 之影響 93
4-4-2 污染氣體成份 SO2 之影響 94
第五章 結論與建議 101
5-1 結論 101
5-2 建議 102
參考文獻 103
附錄 A 120
附錄 B 123
參考文獻 References
Adamson, A. W., “Physical Chemistry of Surfaces,” John Willey and Sons Inc., New York, 1990.
An, J., Lou, J., Meng, Q., Zhang, Z., Ma, X., and Li, J., “Non-thermal plasma injection-CeO2-WO3/TiO2 catalytic method for high-efficiency oxidation of elemental mercury in coal-fired flue gas,” Chemical Engineering Journal, 325, 708-714, 2017.
Anpo, M., Shima, T., Kodama, S., & Kubokawa, Y., “Photocatalytic hydrogenation of propyne with water on small-particle titania: Size quantization effects and reaction intermediates,” Journal of Physical Chemistry, 91(16), 4305-4310, 1987.
Beatrice-Andreea, D., Liliana, L., and Heinz K.,“Oxidation catalysts for elemental mercury in flue gases- A review,” Catalysis, pp.139-170, 2012.
Cai, J., Shen, B., Li, Z., Chen, J., and He, C., “Removal of elemental mercury by clays impregnated with KI and KBr,” Chemical Engineering Journal, 241, pp.19-27, 2014.
Cao, Y., Chen, B., Wu, J., Cui, H., Smith, J., Chen, C. K., and Pan, W. P., “Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal,” Energy and Fuels, 21(1), 145-156, 2007.
Chen, W. C., Lin, H. Y., Yuan, C. S., & Hung, C. H., “Kinetic modeling on the adsorption of vapor-phase mercury chloride on activated carbon by thermogravimetric analysis,” Journal of Air and Waste Management Association, 59(2), 227-235, 2009.
Chen, Z., Zhao, J., Yang, X., Ye, Q., Huang, K., Hou, C., and Li, Y., “Fabrication of TiO2/WO3 composite nanofibers by electrospinning and photocatalystic performance of the resultant fabrics,” Industrial & Engineering Chemistry Research, 55(1), 80-85, 2015.
Chi, G., Shen, B., Yu, R., He, C., and Zhang, X., “ Simultaneous removal of NO and Hg0 over Ce-Cu modified V2O5/TiO2 based commercial SCR catalysts,” Journal of Hazardous Materials, 330, 83-92,2017.
Cho, J.H., Eom, Y.J., and Jeon, S.H., “A pilot-scale TiO2 photocatalytic system for removing gas-phase elemental mercury at Hg emitting facilities,” Journal of Industrial and Engineering Chemistry, 19(1), pp.144-149, 2013.
Clarke, J., Roger, R.H., and David, R.R., “Primary processes in the catalytic photooxidation of p-Cresol,” Journal of Chemical Technology and Biotechnology, 68, 397-404, 1997.
Coleman, H. M., Vimonses, V., Leslie, G., and Amal, R., “Degradation of 1, 4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes,” Journal of Hazardous Materials, 146(3), 496-501, 2007.
David, A.H., Ronald, J.G., Colin, B.N., and Edward, A.R., “Chemistry,” Allyn and Bacon, New York, 1986.
d'Hennezel, O., Pichat, P., and Ollis, D. F., “Benzene and toluene gas-phase photocatalytic degradation over H2O and HCL pretreated TiO2: By-products and mechanisms,” Journal of Photochemistry and Photobiology A: Chemistry, 118(3), 197-204, 1998.
Engweiler, J., Harf, J., and Baiker A., “WOx/TiO2 catalysts prepared by grafting of tungsten alkoxides: morphological properties and catalytic behavior in the selective reduction of NO by NH3,” Journal of Catalysis, 159, 259-269, 1996.
Eom, Y., Jeon, S. H., Ngo, T. A., Kim, J., and Lee, T. G., “Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst,” Catalysis Letters, 121(3-4), 219-225, 2008.
Fernández-Miranda, N., Lopez-Anton, M. A., Díaz-Somoano, M., and Martínez-Tarazona, M. R., “Mercury oxidation in catalysts used for selective reduction of NOx (SCR) in oxy-fuel combustion,” Chemical Engineering Journal, 285, 77-82, 2016.
Finocchio, E., Baldi, M., Pistarino, C., Romezzano, G., Bregani, F., and Toledo, G. P., “A study of the abatement of VOC over V2O5–WO3–TiO2 and alternative SCR catalysts,” Catalysis Today, 59(3-4), 261-268, 2000.
Fogler, H.S., “Elements of Chemical Reaction Engineering,” 3rd edition, Prentice Hall, 1999.
Galbreath, K. C. and Zygarlicke, C. J., “Mercury transformations in coal combustion flue gas,” Fuel Processing Technology, 65, 289-310, 2000.
Gao, L., Wang, Y., Huang, Q., and Guo, S., “Emission of mercury from six low calorific value coal-fired power plants,” Fuel, 210, 611-616, 2017.
Giakoumelou, I., Fountzoula, C., Kordulis, C., and Boghosian, S.. “Molecular structure and catalytic acitivity of V2O5/TiO2 catalysts for the SCR of NO by NH3: In-situ raman spectra in the presence of O2, NH3, NO, H2, H2O, and SO2”, Journal of Catalysis, 239(1), 1-12, 2006.
Gomez-Gimenez, C., Izquierdo, M. T., de las Obras-Loscertales, M., de Diego, L. F., Garcia-Labiano, F., and Adanez, J., “Mercury capture by a structured Au/C regenerable sorbent under oxycoal combustion representative and real conditions,” Fuel, 207, 821-829, 2017.
Granger, P. and Pârvulescu, V. (Eds.)., “Past and present in DeNOx catalysis: from molecular modelling to chemical engineering (Vol. 171) ,” Elsevier, 2007.
Granite, E. J., Pennline, H. W., and Hargis, R. A., “Novel sorbents for mercury removal from flue gas,” Industrial and Engineering Chemistry Research, 39(4), 1020-1029, 2000.
Guan, P., Li, Y., Zhang, J., and Li, W., “Non-enzymatic glucose biosensor based on CuO-decorated CeO2 nanoparticles,” Nanomaterials, 6(9), 159,2016.
Guo, Y., Yan, N., Yang, S., Liu, P., Wang, J., Qu, Z., & Jia, J., “Conversion of elemental mercury with a novel membrane catalytic system at low temperature,” Journal of Hazardous Materials, 213, 62-70, 2012.
He, C., Shen, B., Chen, J., and Cai, J., “Adsorption and oxidation of elemental mercury over Ce-MnOx/Ti-PILCs,” Environmental Science and Technology, 48(14), 7891-7898, 2014.
He, C., Shen, B., Chi, G., and Li, F., “Elemental mercury removal by CeO2/TiO2-PILCs under simulated coal-fired flue gas,” Chemical Engineering Journal, 300, 1-8, 2016.
He, J., Reddy, G. K., Thie,l S. W., Smirniotis, P. G., and Pinto, N. G.. “Simultaneous removal of elemental mercury and NO from flue gas using CeO2 modified MnOx/TiO2 materials,” Energy Fuels, 27(8), 4832-4839, 2013.
He, J., Reddy, G. K., Thiel, S. W., Smirniotis, P. G., and Pinto, N. G., “Ceria-modified manganese oxide/titania materials for removal of elemental and oxidized mercury from flue gas,” The Journal of Physical Chemistry C, 115(49), 24300-24309, 2011.
He, S., Zhou, J., Zhu, Y., Luo, Z., Ni, M., and Cen, K., “Mercury oxidation over a vanadia-based selective catalytic reduction catalyst,” Energy and Fuels, 23(1), 253-259, 2008.
Hoffmann, M. R., Martin, S. T., Choi, W., and Bahnemann, D. W., “Environmental applications of semiconductor photocatalysis,” Chemical Reviews, 95(1), 69-96, 1995.
Howe, R. F. and Gratzel, M., “EPR study of hydrated anatase under UV irradiation,” Journal of Physical Chemistry, 91(14), 3906-3909, 1987.
Hsi, H. C., and Tsai, C. Y., “Synthesis of TiO2− x visible-light photocatalyst using N2/Ar/He thermal plasma for low-concentration elemental mercury removal,” Chemical Engineering Journal, 191, 378-385, 2012.
Huang, H., Liu, G., Zhan, Y., Xu, Y., Lu, H., Huang, H., and Wu, M., “Photocatalytic oxidation of gaseous benzene under VUV irradiation over TiO2/zeolites catalysts,” Catalysis Today, 281, 649-655, 2017.
Hugenschmidt, M. B., Gamble, L., and Campbell, C. T., “The interaction of H2O with a TiO2 (110) surface,” Surface Science, 302(3), 329-340, 1994.
Hung, C. H., and MariÑas, B. J., “Role of chlorine and oxygen in the photocatalytic degradation of trichloroethylene vapor on TiO2 films,” Environmental Science and Technology, 31(2), 562-568, 1997.
James D. Kilgroe, Charles B. Sedman, Ravi K. Srivastava, Jeffret V. Ryan, C. W. Lee, and Susan a. Thorneloe,“Control of Mercury Emissions from Coal-Fired Electric Utility Boilers: Interim Report” Demcember, 2001.
Ji, L., Sreekanth, P. M., Smirniotis, P. G., Thiel, S. W., and Pinto, N. G., “Manganese oxide/titania materials for removal of NOx and elemental mercury from flue gas,” Energy and Fuels, 22(4), 2299-2306, 2008.
Kamata, H., Ueno, S. I., Naito, T., and Yukimura, A., “Mercury oxidation over the V2O5(WO3)/TiO2 commercial SCR catalysts,” Industrial and Engineering Chemistry Research, 47, 8136-8141, 2008.
Kamata,H., Ueno, S.I., Naito, T., “Mercury oxidation by hydrochloric acid over a VOx/TiO2 catalyst,” Catalysis Communications, pp.2441-2444, 2008.
Kocman, D., Horvat, M., Pirrone, N., and Cinnirella, S., “Contribution of contaminated sites to the global mercury budget,” Environmental research, 125, 160-170, 2013.
Lee, D. W., and Yoo, B. R., “Advanced metal oxide (supported) catalysts: Synthesis and applications,” Journal of Industrial and Engineering Chemistry, 20(6), 3947-3959, 2014.
Lee, T. G. and Hyun, J. E., “Structural effect of the in situ generated titania on its ability to oxidize and capture the gas-phase elemental mercury,” Chemosphere, 62, 26-33, 2006.
Lee, T. G., Biswas, P., & Hedrick, E., “Overall kinetics of heterogeneous elemental mercury reactions on TiO2 sorbent particles with UV irradiation,” Industrial and engineering chemistry research, 43(6), 1411-1417, 2004.
Lee, W. J., Bae, G. W., “Removal of elemental mercury (Hg0) by nanosized V2O5/TiO2 catalysts,” Environ. Sci. Techn., 43, 1522-1527, 2009.
Li, B., Wang, H., Xu, Y., and Xue, J., “Study on mercury oxidation by SCR catalyst in coal-fired power plant,” Energy Procedia, 141, 339-344, 2017.
Li, C. H., Hsieh, Y. H., Chiu, W. T., Liu, C. C., and Kao, C. L., “Study on preparation and photocatalytic performance of Ag/TiO2 and Pt/TiO2 photocatalysts,” Separation and Purification Technology, 58(1), 148-151, 2007.
Li, C., Duan, Y., Tang, H., Zhu, C., Li, Y. N., Zheng, Y., and Liu, M., “Study on the Hg emission and migration characteristics in coal-fired power plant of China with an ammonia desulfurization process,” Fuel, 211, 621-628, 2018.
Li, H. L., Wu, C. Y., Li, L. Q., Li, Y., Zhao, Y. C., and Zhang, J. Y., “Kinetic modeling of mercury oxidation by chlorine over CeO2-TiO2 catalysts,” Fuel, 113, 726-732, 2013.
Li, H. L., Wu, C. Y., Li, Y., and Zhang, J. Y., “CeO2-TiO2 catalysts for catalystic oxidation of elemental mercury in low rank coal combustion flue gas,” Environmental Science and Technology, pp. 7394-7400, 2011.
Li, H., Wang, S., Wang, X., Tang, N., Pan, S., and Hu, J., “Catalytic oxidation of Hg0 in flue gas over Ce modified TiO2 supported Co-Mn catalysts: Characterization, the effect of gas composition and co-benefit of NO conversion,” Fuel, 202, 470-482, 2017.
Li, H., Wang, Y., Wang, S., Wang, X., and Hu, J., “Removal of elemental mercury in flue gas at lower temperatures over Mn-Ce based materials prepared by co-precipitation,” Fuel, 208, 576-586, 2017.
Li, H., Wu, C. Y., Li, Y., and Zhang, J., “CeO2–TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas,” Environmental Science and Technology, 45(17), 7394-7400, 2011.
Li, H., Wu, C. Y., Li, Y., and Zhang, J., “Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures,” Applied Catalysis B: Environmental, 111, 381-388, 2012.
Li, H., Wu, C. Y., Li, Y., Li, L., Zhao, Y., and Zhang, J., “Impact of SO2 on elemental mercury oxidation over CeO2–TiO2 catalyst,” Chemical Engineering Journal, 219, 319-326, 2013.
Li, H., Zhu, L., Wu, S., Liu, Y., and Shih, K., “Synergy of CuO and CeO2 combination for mercury oxidation under low-temperature selective catalytic reduction atmosphere,” International Journal of Coal Geology, 170, 69-76, 2017.
Li, Q., Hou, X., Yang, H., Ma, Z., Zheng, J., Liu, F., and Yuan, Z., “Promotional effect of CeOx for NO reduction over V2O5/TiO2-carbon nanotube composites,” Journal of Molecular Catalysis A: Chemical, 356, 121-127, 2012.
Li, Y., and Wu, C. Y., “Role of moisture in adsorption, photocatalytic oxidation, and reemission of elemental mercury on a SiO2− TiO2 nanocomposite,” Environmental Science and Technology, 40(20), 6444-6448, 2006.
Li, Y. and Wu, C.Y, “Kinetic study for photocatalytic oxidation of elemental mercury on a SiO2-TiO2 nanocomposite,” Environmental Engineering Science, 24, 3-12, 2007.
Li, Y., Murphy, P. D., Wu, C. Y., Powers, K. W., and Bonzongo, J. C. J., “Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas, ” Environmental Science and Technology, 42(14), 5304-5309, 2008.
Li, Y., Patrick, M., and Wu, C.Y., “Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2-TiO2 nanocomposite,” Fuel Processing Technology, 8, 567-573,2008.
Linsebigler, A. L., Lu, G., and Yates Jr, J. T., “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results,” Chemical Reviews, 95(3), 735-758, 1995.
Liu, F., Asakura, K., He, H., Shan, W., Shi, X., and Zhang, C., “Influence of sulfation on iron titanate catalyst for the selective catalytic reduction of NOx with NH3,” Applied Catalysis B: Environmental, 103(3-4), 369-377, 2011.
Liu, G., Rodriguez, J. A., Chang, Z., Hrbek, J., and Peden, C. H., “Adsorption and reaction of SO2 on model Ce1x ZrxO2 (111) catalysts,” The Journal of Physical Chemistry B, 108(9), 2931-2938, 2004.
Liu, Y., Wang, Y., Wang, H., and Wu, Z., “Catalytic oxidation of gas-phase mercury over Co/TiO2 catalysts prepared by sol–gel method,” Catalysis Communications, 12(14), 1291-1294, 2011.
Liu, Z., Su, H., Li, J., and Li, Y., “Novel MoO3/CeO2–ZrO2 catalyst for the selective catalytic reduction of NOx by NH3,” Catalysis Communications, 65, 51-54, 2015.
Martin, S.T., Herrmann, H., Choi, W., and Hoffmann, M.R., “Time-resolved Microwave Conductivity,” Journal of the Chemical Society, Faraday Transactions, 90, 3315-3322, 1994.
Mattox, D. M., “Sol-gel derived, air-baked indium and tin oxide films,” Thin Solid Films, 204(1), 25-32, 1991.
Molinari, E. and Tomellini, M., “Impact of electron–hole pair Excitation on the kinetics of exoergic processes at metal surfaces,” Surface Science, 602, 3131-3135, 2008.
Morris, E. A., Kirk, D. W., Jia, C. Q., and Morita, K., “Roles of sulfuric acid in elemental mercury removal by activated carbon and sulfur-impregnated activated carbon,” Environmental Science and Technology, 46(14), 7905-7912, 2012.
Nakahira, A., Kato, W., Tamai, M., Isshiki, T., Nishio, K., and Aritani, H., “Synthesis of nanotube from a layered H2Ti4O9· H2O in a hydrothermal treatment using various titania sources,” Journal of Materials Science, 39(13), 4239-4245, 2004.
Niksa, S. and Fujiwara, N., “A precictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas,” Journal of the Air and Waste Management Association, 55, 1866-1875, 2005.
Obee, T. N., & Hay, S. O., “Effects of moisture and temperature on the photooxidation of ethylene on titania,” Environmental Science and Technology, 31(7), 2034-2038, 1997.
Ohko, Y., Nakamura, Y., Negishi, N., Matsuzawa, S., and Takeuchi, K., “Photocatalytic oxidation of nitrogen monoxide using TiO2 thin films under continuous UV light illumination,” Journal of Photochemistry and Photobiology A: Chemistry, 205(1), 28-33, 2009.
Ollis, D. F., “Contaminant degradation in water,” Environmental Science and Technology, 19(6), 480-484, 1985.
Peral, J. and Ollis, D. F., “Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: Acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation,” Journal of Catalysis, 136(2), 554-565, 1992.
Presto, A. A. and Granite, E. J., “Survey of catalysts for oxidation of mercury in flue gas,” Environmental Science and Technology, 40(18), 5601-5609, 2006.
Pudasainee, D., Seo, Y. C., Sung, J. H., Jang, H. N., and Gupta, R., “Mercury co-beneficial capture in air pollution control devices of coal-fired power plants,” International Journal of Coal Geology, 170, 48-53, 2017.
Qiao, S., Chen, J., Li, J., Qu, Z., Liu, P., Yan, N., and Jia, J., “Adsorption and catalytic oxidation of gaseous elemental mercury in flue gas over MnOx/alumina,” Industrial and Engineering Chemistry Research, 48(7), 3317-3322, 2009.
Reddy, B. M., Durgasri, N., Kumar, T. V., and Bhargava, S. K., “Abatement of gas-phase mercury—recent developments,” Catalysis Reviews, 54(3), 344-398, 2012.
Reddy, B. M., Khan, A., Yamada, Y., Kobayashi, T., Loridant, S., and Volta, J. C., “Structural characterization of CeO2− TiO2 and V2O5/CeO2−TiO2 catalysts by Raman and XPS techniques,” The Journal of Physical Chemistry B, 107(22), 5162-5167, 2003.
Rice, K. M., Walker Jr, E. M., Wu, M., Gillette, C., & Blough, E. R., “Environmental mercury and its toxic effects,” Journal of Preventive Medicine and Public Health, 47(2), 74, 2014.
Riedel, S. and Kaupp, M., “The highest oxidation states of the transition metal elements,” Coordination Chemistry Reviews, 253(5-6), 606-624, 2009.
Riedel, S., Kaupp, M., and Pyykkö, P., “Quantum chemical study of trivalent group 12 fluorides,” Inorganic Chemistry, 47(8), 3379-3383, 2008.
Schiavello, M. and Sclafani, A., “Thermodynamic and Kinetic Aspects in Photocatalysis,” Photocatalysis. Fundamentals and Applications, N. Serpone and E. Pelizzetti (eds.), Wiley, New York, 159-173, 1989.
Schuster, E., “The behavior of mercury in the soil with special emphasis on complexation and adsorption processes-a review of the literature,” Water Air and Soil Pollution, 56(1), 667-680, 1991.
Selishchev, D. S., Kolobov, N. S., Pershin, A. A., and Kozlov, D. V., “TiO2 mediated photocatalytic oxidation of volatile organic compounds: Formation of CO as a harmful by-product, ” Applied Catalysis B: Environmental, 200, 503-513,2017
Shen, H., Ie, I. R., Yuan, C. S., and Hung, C. H., “The enhancement of photo-oxidation efficiency of elemental mercury by immobilized WO3/TiO2 at high temperatures,” Applied Catalysis B: Environmental, 195, 90-103, 2016.
Shen, H., Ie, I. R., Yuan, C. S., Hung, C. H., Chen, W. H., Luo, J., and Jen, Y. H., “Enhanced photocatalytic oxidation of gaseous elemental mercury by TiO2 in a high temperature environment,” Journal of Hazardous Materials, 289, 235-243, 2015.
Srivastava, R. K., Hutson, N., Martin, B., Princiotta, F., and Staudt, J., “Control of mercury emissions from coal-fired electric utility boilers,” Environmental Science and Technology, 40(5), 1385. 2006.
Su, C., Ran, X., Hu, J., & Shao, C., “Photocatalytic process of simultaneous desulfurization and denitrification of flue Gas by TiO2–polyacrylonitrile nanofibers,” Environmental Science and Technology, 47(20), 11562-11568, 2013.
Sun, P., Guo, R. T., Liu, S. M., Wang, S. X., Pan, W. G., Li, M. Y., and Sun, X., “Enhancement of the low-temperature activity of Ce/TiO2 catalyst by Sm modification for selective catalytic reduction of NOx with NH3,” Molecular Catalysis, 433, 224-234, 2017.
Suri, R. P., Liu, J., Hand, D. W., Crittenden, J. C., Perram, D. L., and Mullins, M. E.,. “Heterogeneous photocatalytic oxidation of hazardous organic contaminants in water,” Water Environment Research, 65(5), 665-673, 1993.
Tsai, C. Y., Hsi, H. C., Kuo, T. H., Chang, Y. M., and Liou, J. H., “Preparation of Cu-doped TiO2 photocatalyst with thermal plasma torch for low-concentration mercury removal,” Aerosol and Air Quality Research, 13(2), 639-648, 2013.
Uddin, M. A., Ishibe, K., Wu, S., Su, C., and Sasaoka, E., “Effects of SO2 on NO adsorption and NO2 formation over TiO2 low-temperature SCR catalyst,” Industrial and Engineering Chemistry Research, 46(6), 1672-1676, 2007.
Ullrich, S. M., Tanton, T. W., and Abdrashitova, S. A., “Mercury in the aquatic environment: A review of factors affecting methylation,” Critical Reviews in Environmental Science and Technology, 31(3), 241-293, 2001.
Umar, I. G. and Abdul, H. A., “Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9, 1-12, 2008.
UNEP, Global Mercury Assessment, 2017.
Venkatachalam, N., Palanichamy, M., and ugesan, V., “Sol–gel preparation and characterization of nanosize TiO2: its photocatalytic performance,” Materials Chemistry and Physics, 104(2-3), 454-459, 2007.
Wan, Q., Duan, L., Li, J., Chen, L., He, K., and Hao, J., “Deactivation performance and mechanism of alkali(earth) metals on V2O5-WO3/TiO2 catalyst for oxidation of gaseous elemental mercury in simulated coal-fired flue gas,” Catalysis Today, 175, 189-195, 2011.
Wang, H., Wang, B., Sun, Q., Li, Y., Xu, W. Q., and Li, J., “New insights into the promotional effects of Cu and Fe over V2O5-WO3/TiO2 NH3-SCR catalysts towards oxidation of Hg0,” Catalysis Communications, 100, 169-172, 2017.
Wang, H.Q., Zhou, S.Y., and Xiao, L.. “Titania-nanotubes-a unique photocatalysit and adsorbent for elemental mercury removal,” Catalysis Today, 175, 202-209, 2011.
Wang, T., Li, C., Zhao, L., Zhang, J., Li, S., and Zeng, G., “The catalytic performance and characterization of ZrO2 support modification on CuO-CeO2/TiO2 catalyst for the simultaneous removal of Hg0 and NO,” Applied Surface Science, 400, 227-237, 2017.
Wang, X., Andrews, L., Riedel, S., and Kaupp, M., “Mercury is a transition metal: The first experimental evidence for HgF4,” Angewandte Chemie International Edition, 46(44), 8371-8375, 2007.
Wei, Z., Luo, Y., Li, B., Cheng, Z., Wang, J., and Ye, Q., “Microwave assisted catalytic removal of elemental mercury from flue gas using Mn/zeolite catalyst,” Atmospheric Pollution Research, 6(1), 45-51, 2015.
Wu, C. Y., Lee, T. G., Tyree, G., Arar, E., and Biswas, P., “Capture of mercury in combustion systems by in situ–generated titania particles with UV irradiation, ” Environmental Engineering Science, 15(2), 137-148, 1998.
Wu, Z., Jin, R., Wang, H., & Liu, Y., “Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature, ” Catalysis Communications, 10(6), 935-939, 2009.
Xie, Y., Yan, B., Tian, C., Liu, Y., Liu, Q., and Zeng, H., “Efficient removal of elemental mercury (Hg0) by SBA-15-Ag adsorbents,” Journal of Materials Chemistry A, 2(42), 17730-17734, 2014.
Xu, W., He, H., and Yu, Y., “Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3,” The Journal of Physical Chemistry C, 113(11), 4426-4432, 2009.
Xu, Y., Zhong, Q., and Liu, X., “Elemental mercury oxidation and adsorption on magnesite powder modified by Mn at low temperature,” Journal of Hazardous Materials, 283, 252-259, 2015.
Yamamoto, A., Mizuno, Y., Teramura, K., Shishido, T., and Tanaka, T., “Effects of reaction temperature on the photocatalytic activity of photo-SCR of NO with NH3 over a TiO2 photocatalyst,” Catalysis Science and Technology, 3(7), 1771-1775, 2013.
Yamamoto, A., Teramura, K., Hosokawa, S., and Tanaka, T., “Effects of SO2 on selective catalytic reduction of NO with NH3 over a TiO2 photocatalyst,” Science and Technology of Advanced Materials, 16(2), 024901, 2015.
Yan, B., Liu, Y., Tian, C., Zeng, H., Xie, Y., and Liu, Q., “Efficient removal of elemental mercury (Hg0) by SBA-15-ag adsorbents,” Journal of Materials Chemistry A, 2(42), 17730, 2014.
Yan, N., Chen, W., Chen, J., Qu, Z., Guo, Y., Yang, S., and Jia, J., “Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas,” Environmental Science and Technology, 45(13), 5725-5730, 2011.
Yang, H., Wei, G., Wang, X., Lin, F., Wang, J., and Shen, M., “Regeneration of SO2-poisoned diesel oxidation Pd/CeO2 catalyst,” Catalysis Communications, 36, 5-9, 2013.
Yang, S., Guo, Y., Chang, H., Ma, L., Peng, Y., Qu, Z., and Li, J., “Novel effect of SO2 on the SCR reaction over CeO2: Mechanism and significance,” Applied Catalysis B: Environmental, 136, 19-28, 2013.
Yang, W., Liu, Y., Wang, Q., and Pan, J., “Removal of elemental mercury from flue gas using wheat straw chars modified by Mn-Ce mixed oxides with ultrasonic-assisted impregnation,” Chemical Engineering Journal, 326, 169-181, 2017.
Yang, Y., Liu, J., Zhang, B., Zhao, Y., Chen, X., and Shen, F., “Experimental and theoretical studies of mercury oxidation over CeO2− WO3/TiO2 catalysts in coal-fired flue gas,” Chemical Engineering Journal, 317, 758-765, 2017.
Younis, A., Chu, D., Kaneti, Y. V., and Li, S., “Tuning the surface oxygen concentration of {111} surrounded ceria nanocrystals for enhanced photocatalytic activities,” Nanoscale, 8(1), 378-387, 2016.
Yuan, Y., Zhao, Y., Li, H., Li, Y., Gao, X., Zheng, C., and Zhang, J., “Electrospun metal oxide–TiO2 nanofibers for elemental mercury removal from flue gas,” Journal of Hazardous Materials, 227, 427-435, 2012.
Zhang, A., Xing, W., Zhang, Z., Meng, F., Liu, Z., Xiang, J., and Sun, L., “Promotional effect of SO2 on CeO2–TiO2 material for elemental mercury removal at low temperature,” Atmospheric Pollution Research, 7(5), 895-902, 2016.
Zhang, A., Zhang, L., Chen, X., Zhu, Q., Liu, Z., and Xiang, J., ”Photocatalytic oxidation removal of Hg0 using ternary Ag/AgI-Ag2CO3 hybrids in wet scrubbing process under fluorescent light,” Applied Surface Science, 392, 1107-1116, 2017.
Zhang, A., Zhang, Z., Lu, H., Liu, Z., Xiang, J., Zhou, C., and Sun, L., “Effect of promotion with Ru addition on the activity and SO2 resistance of MnOx–TiO2 adsorbent for Hg0 remova, ” Industrial and Engineering Chemistry Research, 54(11), 2930-2939, 2015.
Zhang, A., Zheng, W., Song, J., Hu, S., Liu, Z., and Xiang, J., “Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature,” Chemical Engineering Journal, 236, 29-38, 2014.
Zhang, H., Zhao, K., Gao, Y., Tian, Y., and Liang, P., “Inhibitory effects of water vapor on elemental mercury removal performance over cerium-oxide-modified semi-coke,” Chemical Engineering Journal, 324, 279-286, 2017.
Zhang, L., Qin, Y. H., Chen, B. Z., Peng, Y. G., He, H. B., and Yi, YUAN., “Catalytic reduction of SO2 by CO over CeO2–TiO2 mixed oxides,” Transactions of Nonferrous Metals Society of China, 26(11), 2960-2965, 2016.
Zhang, L., Zhang, X., Lv, S., Wu, X., and Wang, P., “Promoted performance of a MnOx/PG catalyst for low-temperature SCR against SO2 poisoning by addition of cerium oxide,” RSC Advances, 5(101), 82952-82959, 2015.
Zhang, S., Zhao, Y., Yang, J., Zhang, Y., Sun, P., Yu, X., and Zheng, C., “Simultaneous NO and mercury removal over MnOx/TiO2 catalyst in different atmospheres,” Fuel Processing Technology, 166, 282-290, 2017
Zhang, X., Shen, B., Shen, F., Zhang, X., Si, M., and Yuan, P., “The behavior of the manganese-cerium loaded metal-organic framework in elemental mercury and NO removal from flue gas,” Chemical Engineering Journal, 326, 551-560, 2017.
Zhang, X., Wang, J., Tan, B., Li, Z., Cui, Y., and He, G., “Ce-Co catalyst with high surface area and uniform mesoporous channels prepared by template method for Hg0 oxidation,” Catalysis Communications, 98, 5-8, 2017.
Zhang, Z. and Gao, L., “Preparation of nanosized titania by hydrolysis of alkoxide titanium in micells,” Materials Research Bulletin, 37, 1659-1666, 2002.
Zhao, L., Li, C., Li, S., Wang, Y., Zhang, J., Wang, T., and Zeng, G., “Simultaneous removal of elemental mercury and NO in simulated flue gas over V2O5/ZrO2-CeO2 catalyst,” Applied Catalysis B: Environmental, 198, 420-430, 2016.
Zhao, S., Qu, Z., Yan, N., Li, Z., Zhu, W., Xu, J., and Li, M., “Ag-modified AgI–TiO2 as an excellent and durable catalyst for catalytic oxidation of elemental mercury,” RSC Advances, 5(39), 30841-30850, 2015.
Zhou, J., Hou, W., Qi, P., Gao, X., Luo, Z., and Cen, K., “CeO2–TiO2 sorbents for the removal of elemental mercury from syngas,” Environmental science & technology, 47(17), 10056-10062, 2013.
Zhou, Z., Liu, X., Liao, Z., Shao, H., Lv, C., Hu, Y., and Xu, M., “Manganese doped CeO2-ZrO2 catalyst for elemental mercury oxidation at low temperature,” Fuel Processing Technology, 152, 285-293, 2016.
Zhu, Y., Jain, N., Hudait, M. K., Maurya, D., Varghese, R., and Priya, S., “X-ray photoelectron spectroscopy analysis and band offset determination of CeO2 deposited on epitaxial (100),(110), and (111) Ge,” Journal of Vacuum Science and Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 32(1), 011217, 2014.
顏佳良,“燃煤火力發電廠汞污染物之現場取樣分析研究”,龍華科技大學工程技術研究所碩士論文,2008。
彭依偉,“活性炭紙纖濾網塗覆奈米光觸媒分解丙酮之研究”,國立中山大學環境工程研究所碩士論文,2008。
吳怡貞,“利用真空濺鍍法製備可見光奈米光觸媒進行丙酮分解之研究”,國立中山大學環境工程研究所碩士論文,2007。
郭柏成,“應用真空濺鍍法製備複合型奈米TiO2/ITO薄膜光觸媒之丙酮分解研究”,國立中山大學環境工程研究所碩士論文,2010。
王大昌,“奈米二氧化鈦光觸媒玻璃纖維濾網應用於處理室內VOCs之可行性研究”,國立中山大學環境工程研究所碩士論文,2007。
楊珊、張軍營、趙永椿,“納米TiO2-活性炭的製備及光催化脫汞初探”,工程熱物理學報。 31(2):339-342,2010。
楊軍、張軍營、袁媛,“納米TiO2-矽酸鋁纖維的製備及光催化脫汞研究”,工程熱物理學報。 32(1):152-156,2011。
申華臻,“高溫環境下WO3/TiO2與V2O5/TiO2對氣態元素汞之氧化效率提升及其反應機制探討 ”,國立中山大學環境工程研究所博士論文,2016。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code