Responsive image
博碩士論文 etd-0717118-165904 詳細資訊
Title page for etd-0717118-165904
論文名稱
Title
高屏空品區高污染事件日PM2.5之化學指紋特徵 及污染源解析
Chemical Fingerprint and Source Apportionment of PM2.5 at Highly Polluted Episodes in Kaoping Air Quality Zone
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
196
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-19
繳交日期
Date of Submission
2018-08-17
關鍵字
Keywords
化學指紋特徵、二次氣膠、污染源解析、高污染事件期間、細懸浮微粒(PM2.5)
Secondary aerosols, Chemical characteristics, PM2.5 episodes, Source apportionment, Atmospheric fine particles (PM2.5)
統計
Statistics
本論文已被瀏覽 5646 次,被下載 0
The thesis/dissertation has been browsed 5646 times, has been downloaded 0 times.
中文摘要
長久以來,台灣南部地區空氣污染甚為嚴重,其所在的高屏空品區空氣品質不良率居高不下,尤其對健康危害甚鉅的PM2.5濃度明顯高於其他空品區,而其原因迄今尚未完全釐清。高屏空品區的PM2.5高污染事件好發於每年冬、春季,2016年高屏空品區日平均PM2.5濃度有26.3%高於空氣品質標準(35 μg/m3)。高雄地區為台灣重工業最密集之區域,除本地排放之大量空氣污染物外,跨境長程傳輸也會導致空氣品質的劣化。有鑑於此,本研究於2016-2017年秋、冬及春季發生PM2.5高污染事件期間(PM2.5 >35 μg/m3)共進行四次採樣,在高屏空品區四處測站分別為楠梓、大寮、林園、潮州執行PM2.5同步採樣,然後進行化學成份分析(含水溶性離子、金屬元素、碳成份、脫水醣、有機酸),俾探討高污染事件期間PM2.5的時空變化與化學指紋特徵,再利用逆軌跡模擬、CMB受體模式與富集因子(EF),藉以解析PM2.5之可能污染來源。
研究結果顯示,高污染事件期間水溶性離子成份變化趨勢與PM2.5質量濃度變化基本一致,其中二次無機性氣膠(SIA)佔水溶性離子(SIA/WSI)的絕大部分,其中高污染事件期間(48.4~97.3%)較非高污染事件期間(37.1~75.4%)明顯上升;碳成份佔PM2.5的9-23%,OC/EC比值於高污染事件期間(2.11~2.14)較非高污染事件期間(1.86~2.02)高,顯示高污染事件期間氣團多屬二次衍生性有機氣膠;金屬元素成份佔PM2.5的12-19%,主要以地殼元素中Na、Mg、K、Ca、Fe、Zn、Al為主要元素外,尚含有較微量工業排放之Ti、Cr、Cd、Cu、Pb、Ni、V;脫水醣與有機酸成份僅佔PM2.5的1~7%,丙二酸與琥珀酸之比值(M/S)於Case 1及Case 4普遍>1,顯示高污染事件期間PM2.5中有機酸成份多屬二次有機氣膠,Case 2及Case 3之M/S比值<1,顯示以一次有機氣膠為主。
此外,受體模式解析結果顯示,高污染事件期間PM2.5的主要污染來源為工業排放(燃煤鍋爐、鋼鐵業、垃圾焚化廠、石化業)佔25.4~66.9%,其次為二次無機氣膠(硝酸鹽、硫酸鹽)佔16.0~34.3%。
Abstract
Air pollution is a serious environmental issue in southern Taiwan since its poor air quality rate is the highest among seven Air Quality Zones. High concentration of PM2.5 in Kaoping Air Quality Zone (KAQZ) is harmful to human health, however the causes of poor air quality hasn’t been clarified so far. Previous records showed that PM2.5 episodes in KAQZ occurred frequently in winter and spring. In 2016, the frequency of daily average PM2.5 concentration higher than ambient air quality standard (35 μg/m3) was 26.3% in KAQZ. Kaohsiung is a densely populated industrial city in southern Taiwan. Both local sources and cross-boundary transport cause the deterioration of Kaohsiung’s ambient air quality.
This study aims to conduct the sampling of PM2.5 during four PM2.5 episodes (PM2.5 >35 μg/m3) ranging from 18 to 94 µg/m3. PM2.5 samples were collected simultaneously at Nanzi, Daliao, Linyuan, and Chaozhou from October 2016 to April 2017. After sampling, conditioning, and weighing, water-soluble ions, metallic elements, carbonaceous contents, anhydrosugars, and organic acids of PM2.5 were then analyzed to characterize the chemical fingerprint of PM2.5 at Nanzi, Daliao, Linyuan and Chaozhou, respectively. Furthermore, chemical mass balance (CMB) receptor modelling and backward trajectory simulation were applied to identify the potential sources of PM2.5 and their contributions.
Chemical analytical results showed that the variation of water-soluble ions during the PM2.5 episodes was consistent with PM2.5 concentration. Secondary inorganic aerosols (SIA) dominated water-soluble ions (WSI). The mass ratio of SIA and WSI (SIA/WSI) in PM2.5 ranged from 48.4 to 97.3%, which was significantly higher than those of 37.1~75.4% during the non-episode periods. Carbon content accounted for 9-23% of PM2.5, and the mass ratio of organic and elemental carbon (OC/EC) ranged from 2.11 to 2.14 during the PM2.5 episodes, which were higher than those of 1.86~2.02 during the non-episode periods, indicating that organic carbon was dominated by secondary organic aerosols (SOAs) during the PM2.5 episodes. Metallic content accounted for 12-19% of PM2.5 in which crust elements (Na, Mg , K, Ca, Fe, Zn, Al) were dominant and trace metals were (Ti, Cr, Cd, Cu, Pb, Ni, V) mainly emitted from industrial sources. Anhydrosugars and organic acids accounted for 1~7% of PM2.5. The mass ratios of malonic and succinic acid (M/S) were generally >1 at Cases 1 and 4, indicating that organic acids were mostly attributed to secondary organic aerosols (SOA) during the PM2.5 episodes. The M/S ratios were <1 at Cases 2 and 3, showing that organic acids were mainly primary organic aerosols.
Results obtained from CMB receptor modeling showed that major sources of PM2.5 at four sites were industrial emissions (i.e. coal-fired boilers, steel industry, waste incinerators, and petrochemical plants) (25.4~66.9%) and followed by secondary inorganic aerosols (i.e. secondary nitrate and sulfate) (16.0~34.3%).
目次 Table of Contents
學位論文審定書 i
致謝 ii
中文摘要 iii
英文摘要 iv
目錄 vi
圖目錄 ix
表目錄 xii
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
1-3 研究範圍與架構 2
第二章 文獻回顧 4
2-1 高屏空氣品質管理區環境概況 4
2-1-1 高雄市環境概況 4
2-1-2 屏東縣環境概況 6
2-2 懸浮微粒之物理特性 10
2-2-1 懸浮微粒之粒徑分佈及分類 10
2-2-2 懸浮微粒濃度之季節變化 15
2-3 懸浮微粒之化學特性 19
2-3-1 懸浮微粒之水溶性離子成份 19
2-3-2 懸浮微粒之金屬元素成份 23
2-3-3 懸浮微粒之碳成份 26
2-3-4 懸浮微粒之脫水醣成份 29
2-3-5 懸浮微粒之有機酸成份 33
2-4 污染來源解析模式 37
2-4-1 富集因子分析 37
2-4-2 化學質量平衡受體模式 39
2-4-3 逆軌跡模式 40
第三章 研究方法 42
3-1 細懸浮微粒採樣規劃 42
3-1-1 採樣地點規劃 42
3-1-2 採樣時間規劃 42
3-2 細懸浮微粒採樣及量測 43
3-2-1 細懸浮微粒採樣器 44
3-2-2 細懸浮微粒質量濃度量測 44
3-3 細懸浮微粒化學成份分析方法 46
3-3-1 水溶性離子成份分析方法 46
3-3-2 金屬元素成份分析方法 48
3-3-3 碳成份分析方法 50
3-3-4 脫水醣、有機酸成份分析方法 52
3-4 品保與品管 54
3-4-1 採樣方法之品保品管 54
3-4-2 分析方法之品保品管 55
3-5 細懸浮微粒之污染來源解析 57
3-5-1 富集因子分析法 57
3-5-2 化學質量平衡受體模式 58
3-5-3 逆軌跡模式 59
第四章 結果與討論 61
4-1 高屏地區氣象條件分析 61
4-1-1 相對溼度 61
4-1-2 大氣溫度(氣溫) 62
4-1-3 降雨量 64
4-1-4 風玫圖及綜觀天氣圖 64
4-2 細懸浮微粒濃度之時空變化趨勢分析 65
4-2-1 細懸浮微粒濃度之季節變化趨勢分析 66
4-2-2 細懸浮微粒濃度之日夜變化趨勢分析 69
4-3 細懸浮微粒之化學成份分析 73
4-3-1 水溶性離子成份之季節及日夜變化趨勢 73
4-3-2 金屬元素成份之季節及日夜變化趨勢 88
4-3-4 碳成份之季節及日夜變化趨勢 93
4-3-4 脫水醣成份之季節及日夜變化趨勢 104
4-3-5 有機酸成份之季節及日夜變化趨勢 106
4-4 細懸浮微粒污染來源解析 110
4-4-1 富集因子分析結果 110
4-4-2 化學質量平衡受體模式解析結果 111
4-4-3 逆軌跡模式模擬結果 120
4-4-4 其他指紋特徵分析結果 131
第五章 結論與建議 136
5-1 結論 136
5-2 建議 140
參考文獻 141
附錄A 分析物種之檢量線 153
附錄B 分析方法之品保與品管 164
附錄C PM2.5分析數據 170
參考文獻 References
Andreae, M. O., Atlas, E., Harris, G. W., Helas, G., Kock, A. D., Koppmann, R., and Scharffe, D., “Methyl halide emissions from savanna fires in southern Africa,” Journal of Geophysical Research: Atmospheres, 101(19), 23603-23613, 1996.
Andreae, M., “Soot carbon and excess fine potassium: long-range transport combustion-derived aerosols,” Science, 220, 1148-1150, 1983.
Appel, B. R., Tokiwa, Y., and Haik, M., “Sampling of nitrates in ambient air,” Atmospheric Environment, 15(3), 283-289, 1981.
Ashbaugh, L. L., Malm, W. C., and Sadeh, W. Z., “A residence time probability analysis of sulfur concentrations at Grand Canyon National Park,” Atmospheric Environment, 19(8), 1263-1270, 1985.
Bartaria, D., Chandra, P., and Krishna, V., “A study on speciation and coordination tendency of glutamic acid and uracil for ternary complexation towards some toxic metal ions,” Chemical Science Review and Letters, 1(4), 201-208, 2013.
Cao, J. J., Lee, S. C., Ho, K. F., Zou, S. C., Fung, K., Li, Y., and Chow, J. C., “Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China,” Atmospheric Environment, 38(27), 4447-4456, 2004.
Chang, S. T. and Miles, P. G., “Mushroom biology—a new discipline,” Mycologist, 6(2), 64-65, 1992.
Cheng, Y. H. and Tsai, C. J., “Evaporation loss of ammonium nitrate particles during filter sampling,” Journal of Aerosol Science, 28(8), 1553-1567, 1997.
Cheng, Z. L., Lam, K. S., Chan, L. Y., Wang, T., and Cheng, K. K., “Chemical characteristics of aerosols at coastal station in Hong Kong. I. Seasonal variation of major ions, halogens and mineral dusts between 1995 and 1996,” Atmospheric Environment, 34, 2771-2783, 2000.
Chow, J. C., Watson, J. G., Fujita, E. M., Lu, Z., and Lawson, D. R., “Temporal and spatial variation of PM2.5 and PM10 aerosols in the Southern California Air Quality Study,” Atmospheric Environment, 28, 2061-2080, 1994.
Colbeck, I. and Harrison, R. M., “Ozone-secondary aerosol-visibility relationships in North-West England,” Science of the Total Environment, 34, 87-100, 1984.
Dongarr, G., Manno, E., Varrica, D., Lombardo, M., and Vultaggio, M., “Study on ambient concentrations of PM10, PM10-2.5, PM2.5 and gaseous pollutants. Trace elements and chemical speciation of atmospheric particulates,” Atmospheric Environment, 44(39), 5244-5257, 2010.
Dongarr, G., Manno, E., Varrica, D., and Vultaggio, M., “Mass levels, crustal component and trace elements in PM10 in Palermo, Italy,” Atmospheric Environment, 41(36), 7977-7986, 2007.
Engling, G., “Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection,” Atmospheric Environment, 40(SUPPL. 2), 299-311, 2006.
Favez, O., Cachier, H., Sciare, J., Alfaro S. C., El-Araby, T. M., Harhash, M. A., and Abdelwahab, M. M., “Seasonality of major aerosol species and their transformations in Cairo megacity,” Atmospheric Environment, 42, 1503-1516, 2008.
Gelencser, A., May, B., Simpson, D., Sánchez‐Ochoa, A., Kasper‐Giebl, A., Puxbaum, H., and Legrand, M., “Source apportionment of PM2.5 organic aerosol over Europe: Primary/secondary, natural/anthropogenic, and fossil/biogenic origin,” Journal of Geophysical Research: Atmospheres, 112(D23), 2007.
Giannoni, M., Martellini, T., Del Bubba, M., Gambaro, A., Zangrando, R., Chiari, M., and Cincinelli, A., “The use of levoglucosan for tracing biomass burning in PM2.5 samples in Tuscany (Italy),” Environmental Pollution, 167, 7–15, 2012.
Han, Y. J., Kim, H. W., Cho, S. H., Kim, P. R., and Kim, W. J., “Metallic elements in PM2.5 in different functional areas of Korea: Concentrations and source identification,” Atmospheric Research, 153, 416-428, 2015.
Hinds, W. C., “Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles,” John Willey and Sons, New York, 1999.
Kawamura, K. and Ikushima, K., “Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere,” Environmental Science and Technology, 27, 2227-2235, 1993.
Khan, M. F., Shirasuna, Y., Hirano, K., and Masunaga, S., “Characterization of PM2.5, PM2.5-10 and PM>10 in ambient air, Yokohama, Japan,” Atmospheric Environment, 96, 159-172, 2010.
Kim, E., Hopke, P. K., and Edgerton, E. S., “Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization,” Atmospheric Environment, 38, 3349-3362, 2004.
Kunwar, B. and Kawamura, K., “One-year observations of carbonaceous and nitrogenous components and major ions in the aerosols from subtropical Okinawa Island, an outflow region of Asian dusts,” Atmospheric Chemistry and Physics, 14(4), 1819–1836, 2014.
Lane, T. E., Donahue, N. M., and Pandis, S. N., “Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model,” Atmospheric Environment, 42, 7439-7451, 2008.
Ledoux, F., Kfoury, A., Delmaire, G., Roussel, G., El Zein, A., and Courcot, D., “Contributions of local and regional anthropogenic sources of metals in PM2.5 at an urban site in northern France,” Chemosphere, 181, 713-724, 2017.
Levin, B. E., Dunn-Meynell, A. A., and Routh, V. H., “Brain glucose sensing and body energy homeostasis: role in obesity and diabetes. American Journal of Physiology-Regulatory,” Integrative and Comparative Physiology, 276(5), 1223-1231, 1999.
Li, M., Hu, M., Du, B., Guo, Q., Tan, T., Zheng, J., and Guo, S., “Temporal and spatial distribution of PM2.5 chemical composition in a coastal city of Southeast China,” Science of The Total Environment, 605, 337-346, 2017.
Li, T. C., Yuan, C. S., Wu, S. P., Wang, X. H., and Shih, C. H., “Chemical Characteristics of PM10 during High PM10 Episodes in Hap Mun Bay,” Journal of Process Engineering, 9, 225-230, 2009.
Liberda, E. N., Tsuji, L. J., and Peltier, R. E., “Mining in subarctic Canada: Airborne PM2.5 metal concentrations in two remote First Nations communities,” Chemosphere, 139, 452-460, 2015.
Liebrich, U., Leuenberger, P., Schwartz, J., Schindler, C., Monn, C., Bolognini, G., and Grize, L., “Lung function and long term exposure to air pollutants in Switzerland. Study on Air Pollution and Lung Diseases in Adults (SAPALDIA) Team,” American Journal of Respiratory and Critical Care Medicine, 155(1), 122-129, 1997.
Lin, J. J., “Characterization of water-soluble ion species in urban particles,” Environment International, 28, 55-61, 2002.
Lyu, X. P., Guo, H., Cheng, H. R., Wang, X. M., Ding, X., Lu, H. X., and Xu, C., “Observation of SOA tracers at a mountainous site in Hong Kong: Chemical characteristics, origins and implication on particle growth,” Science of the Total Environment, 605, 180-189, 2017.
Mahapatra, P. S., Sinha, P. R., Boopathy, R., Das, T., Mohanty, S., Sahu, S. C., and Gurjar, B. R., “Seasonal progression of atmospheric particulate matter over an urban coastal region in peninsular India: Role of local meteorology and long-range transport,” Atmospheric Research, 199, 145-158, 2018.
Manahan, S. E., “Fundamentals of Environmental Chemistry,” CRC Press, 2011.
Marcazzan, G. M., Vaccaro, S., Valli, G., and Vecchi, R., “Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy),” Atmospheric Environment, 35(27), 4639-4650, 2001.
Mochida, M., Kawamura, K., Fu, P., and Takemura, T., “Seasonal variation of levoglucosan in aerosols over the western North Pacific and its assessment as a biomass-burning tracer,” Atmospheric Environment, 44, 3511-3518, 2010.
Na, K., Sawant, A. A., Song, C., and Cocker, D. R., “Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California,” Atmospheric Environment, 38(9), 1345-1355, 2004.
Novakov, T., “Soot in the atmosphere. In Particulate Carbon,” Springer Boston, 19-41, 1982.
Pakkanen, T. A., “Study of formation of coarse particle nitrate aerosol,” Atmospheric Environment, 30(14), 2475-2482, 2014.
Park, S. S., Kim, Y. J., Cho, S. Y., and Kim, S. J., “Characterization of PM2.5 aerosols dominated by local pollution and Asian dust observed at an urban site in Korea during aerosol characterization experiments (ACE)–Asia Project,” Journal of Air and Waste Management Association, 57(4), 434-443, 2007.
Park, S. S. and Kim, Y. J., “Source contributions to fine particulate matter in an urban atmosphere,” Chemosphere, 59(2), 217-226, 2005.
Raad, C., Interpretatie Van Belastingverdragen, 1978.
Ragosta, M., Caggiano, R., Macchiato, M., Sabia, S., and Trippetta, S., “Trace elements in daily collected aerosol: Level characterization and source identification in a four-year study,” Atmospheric Research, 89(1-2), 206-217, 2008.
Sato, K., Takami, A., Isozaki, T., Hikida, T., Shimono, A., and Imamura, T., “Mass spectrometric study of secondary organic aerosol formed from the photo-oxidation of aromatic hydrocarbons,” Atmospheric Environment, 44, 1080-1087, 2010.
Schauer, J. J., Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R., “ource apportionment of airborne particulate matter using organic compounds as tracers,” Atmospheric Environment, 30(22), 3837-3855, 1996.
Schwartz, J., “Air pollution and daily mortality: a review and meta analysis,” Environmental Research, 64(1), 36-52, 1994.
Seaton, A., Godden, D., MacNee, W., and Donaldson, K., “Particulate air pollution and acute health effects,” The Lancet, 345(8943), 176-178, 1995.
Seinfeld, J. H. and Pandis, S. N., “Atmospheric Chemistry and Physics: From Air Pollution to Climate Change,” Wiley-Interscience, New York, 2006.
Shahid, I., Kistler, M., Mukhtar, A., Ghauri, B. M., Ramirez-Santa Cruz, C., Bauer, H., and Puxbaum, H., “Chemical characterization and mass closure of PM10 and PM2.5 at an urban site in Karachi–Pakistan,” Atmospheric Environment, 128, 114-123, 2016.
Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O.,Fraser, M. P., Rogge, W. F., and Cass, G. R., “Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles,” Atmospheric Environment, 33, 173–182, 1999.
Simoneit, B. R., “Biomass burning-A review of organic tracers for smoke from incomplete combustion,” Applied Geochemistry, 17, 129-162, 2002.
Streets, D., Yarber, K., Woo, J. H., and Carmichael, G., “Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions,” Global Biogeochemical Cycles, 17(4) , 1099, 2003.
Tian, Y., Liu, J., Han, S., Shi, X., Shi, G., Xu, H., and Russell, A. G., “Spatial, seasonal and diurnal patterns in physicochemical characteristics and sources of PM2.5 in both inland and coastal regions within a megacity in China,” Journal of Hazardous Materials, 342, 139-149, 2018.
Tobisu, M. and Chatani, N., “Cross-couplings using aryl ethers via C–O bond activation enabled by nickel catalysts,” Accounts of Chemical Research, 48(6), 1717-1726, 2015.
Tolis, E. I., Saraga, D. E., Lytra, M. K., Papathanasiou, A. C., Bougaidis, P. N., Partroakis, O. E., Ioannodis, I. I., and Bartzis, J. G., “Concentration and chemical composition of PM2.5 for a one-year period at Thessaloniki, Greece: A comparison between city and port area,” Atmospheric Environment, 113, 197-207, 2015.
Tsai, H. H., Yuan, C.S., Hung, C. H., Lin, C., and Lin, Y. C., “Influence of Sea-Land Breezes on the Tempospatial Distribution of Atmospheric Aerosols over Coastal Region,” Journal Air and Waste Management Association, 61, 358-376, 2011.
Tsai, H. H., Yuan, C. S., Hung, C. H., and Lin, Y. C., “Physicochemical Properties of PM2.5 and PM2.5-10 at Inland and Offshore Sites over Southeastern Coastal Region of Taiwan Strait,” Aerosol and Air Quality Research, 11, 663-677, 2011.
Turpin, B. J. and Huntzicker, J. J., “Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS,” Atmospheric Environment, 29(23), 3527-3544, 1995.
Turpin, D. H., “Effects of inorganic N availability on algal photosynthesis and carbon metabolism,” Phycology, 27(1), 14-20, 1991.
Wang, H. L., Qiao, L. P., Lou, S. R., Zhou, M., Chen, J. M., Wang, Q., and Huang, C., “PM2.5 pollution episode and its contributors from 2011 to 2013 in urban Shanghai, China,” Atmospheric Environment, 123, 298–305, 2015.
Wang, H. L., Qiao, L. P., Lou, S. R., Zhou, M., Ding, A. J., Huang, H. Y., Chen, J. M., Wang, Q., Tao, S. K., Chen, C. H., Li, L., and Huang, C., “Chemical composition of PM2.5 and meteorological impact among three years in urban Shanghai, China,” Cleaner Production, 112, 1302-1311, 2016.
Wedepohl, K. H., “The composition of the continental-crust,” Geochimica et Cosmochimica Acta, 59, 1217-1232, 1995.
Whitby, K. H. and Sverdrup, G. M., “California aerosols: Their physical and chamical characteristics,” Environmental Science and Technology, 9, 477-517, 1980.
Wu, L., Feng, Y., Wu, J., Zhu, T., Bi, X., Han, B., Yang, W., and Yang, Z., “Secondary organic carbon quantification and source apportionment of PM10 in Kaifeng, China,” Environmental Sciences, 21, 1353-1362, 2009.
Yamasoe, M. A., Artaxo, P., Miguel, A. H., and Allen, A. G., “Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements,” Atmospheric Environment, 34(10), 1641-1653, 2000.
Yao, X., Fang, M., Chan, C. K., Ho, K., and Lee, S., “Characterization of dicarboxylic acids in PM2.5 in Hong Kong,” Atmospheric Environment, 38(7), 963-970, 2004.
Yuan, C. S., Hai, C. X., and Zhao, M., “Source profiles and fingerprints of fine and coarse sands resuspended from soils sampled in Central Inner Mongolia,” Particuology, 4(6), 304-311, 2006.
Yuan, C. S. and Du, K., “Aerosol and Air Quality Research in Taiwan Cross-Strait Areas,” Aerosol and Air Quality Research, 13, 1-2, 2013.
Zhang, X. Q. and McMurry, P. H., “Theoretical analysis of evaporative losses from impactor and filter deposits,” Atmospheric Environment, 21(8), 1779-1789, 1987.
Zhao, B., Wang, S., Donahue, N. M., Jathar, S. H., Huang, X., Wu, W., and Robinson, A. L., “Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China” Scientific Reports, 6, 28815, 2016.
Zhao, L. D., Lo, S. H., Zhang, Y., Sun, H., Tan, G., Uher, C., and Kanatzidis, M. G., “Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals,” Nature, 508(7496), 373, 2014.
Zhung H., Chen, C. K., Fang, M., and Wexler, A. S., “Formation of nitrate and non- sea-salt sulfate on coarse particles,” Atmospheric Environment, 33, 4223- 4233, 1999.
劉山豪,“高雄都會區消光係數與能見度量測及細微粒污染源貢獻量解析”,國 立中山大學環境工程研究所碩士論文,2000。
葉士鳴,“大氣中懸浮微粒含碳成分之分佈與來源”,成功大學環境工程學系學位論文,2002。
東靜姍,“2006-2012南台灣大氣細懸浮微粒濃度特性探討-以原高雄市為例”, 屏東科技大學環境工程與科學系所學位論文,2013。
鄭曼婷,“台中沿海及都會區氣膠特性及來源分析”,國科會/環保署科技合作 研究計畫期末報告,1999。
袁中新,“高污染空品區室外空氣污染熱區解析與暴露特性分析”,國科會/環保署科技合作研究計畫期末報告,2006。
林聖達,“台西地區大氣懸浮微粒化學組成份析及特性之研究”,環球科技大學 環境資源管理研究所碩士論文,2011。
邵承宗,“大陸沙塵暴對澎湖地區懸浮微粒特性之影響研究”,國立中山大學環境工程研究所碩士論文,2003。
鐘博章,“東海南部大氣中金屬元素之濃度、來源及通量研究”,國立台灣大學海洋研究所,2002。
陳康興、陳瑞仁、林銳敏、黃國林,“高屏地區大氣細微粒(PM2.5)特徵及來源分析研究”,環保署/國科會空污防制科研合作計畫報告,2005。
底宗鴻,“高雄地區陸域及鄰近海域懸浮微粒物化特性分析及時空分佈探討”,國立中山大學環境工程研究所碩士論文,2008。
莊學龍,“台灣海峽及南海交界區域長程傳輸之細懸浮微粒時空分佈、指紋特徵 及污染源解析”,國立中山大學環境工程研究所碩士論文,2016。
姜彧波,“巴士海峽、台灣海峽及南海交界區域PM2.5晝夜濃度變化及化學成份特徵分析”,國立中山大學環境工程研究所碩士論文,2017。
林建利,“稻作種類 Chamber 燃燒粒子特徵暨碳排放研究”,國立雲林科技大學環境與安全衛生工程系碩士班碩士論文,2012。
廖建欽,“閩江口海島及陸域大氣懸浮微粒濃度季節變化趨勢分析及污染源貢獻量探討”,國立中山大學環境工程研究所碩士論文,2013。
蘇國鑫,“化學品質平衡受體模型在大氣細顆粒物 PM2.5源解析中的應用”,環境,96-97,2011。
曾佑倫,“巴士海峽、台灣海峽及南海交界區域PM2.5晝夜濃度變化及化學成份特徵分析”,國立中山大學環境工程研究所碩士論文,2016。
張弼、王珍、郭軍,“富集因數法分析貴陽市 PM2.5主要排放源污染元素”,環境科學導刊,172-175,2016。
張立農,江孟玲,林昭遠,“台灣交通空氣品質監測站 PM10 變異影響因素之研究”,Soil and Water Conservation, 47(1), 1235-1246,2015。
徐玉眉,“海鹽氣膠氯損失之研究”,國立台灣大學環境工程研究所碩士論文, 2000。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code