Responsive image
博碩士論文 etd-0717118-170914 詳細資訊
Title page for etd-0717118-170914
論文名稱
Title
東亞地區海洋氣膠化學指紋特徵及長程傳輸
Characteristics of Chemical Fingerprint and Long-range Transport of Marine Aerosols in East Asia
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
223
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-19
繳交日期
Date of Submission
2018-08-17
關鍵字
Keywords
海洋氣膠、生質燃燒、長程傳輸、污染源解析、化學指紋特徵、季節及日夜變化
source apportionment, long-range transport, spatiotemporal variation, chemical characteristics, marine aerosols
統計
Statistics
本論文已被瀏覽 5642 次,被下載 0
The thesis/dissertation has been browsed 5642 times, has been downloaded 0 times.
中文摘要
隨著東亞地區各國的工、商業崛起,化石燃料使用量及人為污染物排放均呈現大幅增加,此舉導致能源劇烈消耗與產生大量污染物,導致東亞各國空氣品質均受到影響。台灣海峽(Taiwan Strait)及南海(South China Sea)位處台灣、中國大陸、菲律賓及中南半島之間,因冬、春兩季盛行東北季風而挾帶空氣污染物(如:灰霾)及亞洲沙塵(Asian dusts)的影響,再加上東南亞地區於春耕時期使用火耕(slash-and-burn)所造成之生質燃燒日趨嚴重,使得人為及自然污染物藉由長程傳輸跨越台灣海峽及南海,進而使得下風處國家或地區的空氣品質劣化,也會對於此兩海域的空氣品質造成一定程度的影響。
有鑑於此,本研究旨在探討東亞地區細懸浮微粒時空分佈、化學指紋特徵、污染來源及交互影響。本研究於2017年8月至2018年4月期間,分別於澎湖群島、東沙群島及南沙群島,同步執行PM2.5採樣,並進行化學成份(水溶性離子成份、金屬元素成份、碳成份、脫水醣成份及有機酸成份)分析,藉以瞭解東亞地區PM2.5的化學指紋特徵。此外,為釐清該區域之污染源種類及貢獻率,本研究亦利用化學質量平衡受體模式、逆軌跡模擬等方法,進行該區域PM2.5污染源種類及貢獻率之解析。
本研究結果顯示,高濃度PM2.5好發於冬、春季,主要受到源自於北方地區的人為污染物隨氣團南下傳輸所致,導致PM2.5濃度明顯上升,在日夜變化方面,四季採樣期間多半屬於日間高於夜間之情形。由化學成份分析結果顯示,PM2.5的水溶性離子成份以二次無機性氣膠(NO3-、SO42-、NH4+)為主,約佔水溶性離子成份(SIAs/WSI)的42.4~79.9%,且以冬、春季較為明顯,多半呈現日間高於夜間之趨勢。金屬元素成份皆以Ca、K、Mg、Fe、Al等地殼元素為主,而自秋季起微量金屬元素(如:V、Cr、Mn、Ni、Cu、Zn、As、Cd)濃度逐漸升高,富集因子結果顯示,秋、冬、春季採樣期間Ti、Cr、Mn、Ni、Cu、Zn等的EF值大於10,顯示三處採樣點除受土壤逸散揚塵貢獻外,亦受到跨境傳輸人為污染物之影響。碳成份方面,四季採樣期間有機碳(OC)濃度均高於元素碳(EC),且於秋季起,二次有機碳濃度有明顯上升的趨勢。就脫水醣分析而言,三處採樣點除左旋葡萄糖外,半乳醣及甘露醣皆未檢出,左旋葡萄糖濃度於冬、春季濃度明顯高於夏、秋季,經由逆軌跡圖及四季火點圖發現,冬、春季期間污染氣團主要來自於中國大陸華北、華中地區等生質燃燒發生較為頻繁區域,而夏季採樣期間南沙群島受到印尼地區森林火災影響較澎湖群島及東沙群島嚴重,導致左旋葡萄糖濃度高於另外兩處採樣點。三處採樣點之有機酸濃度與PM2.5濃度呈現相同的變化趨勢,草酸、丙二酸及琥珀酸濃度皆於冬、春兩季採樣期間有明顯升高趨勢,採樣期間三處採樣點的丙二酸與琥珀酸比值(M/S)均大於1.0,其M/S比值依序為南沙群島>東沙群島>澎湖群島,顯示在採樣期間,有機酸主要來自二次有機氣膠的生成。
就污染源種類及其貢獻率而言,主要以海鹽飛沫、逸散揚塵、燃油鍋爐、交通運輸及衍生性硫酸鹽為主,夏季於南方帶來較為潔淨的氣團,故此時PM2.5濃度相對較低,污染源種類及其貢獻率與背景日較為相似。自秋季起,污染源種類逐漸增加且貢獻率亦逐漸上升,增加的污染源種類以人為污染源居多,包括石化業、鋼鐵業及生質燃燒等。整體而言,澎湖群島四季境外傳輸比例介於14~56%之間,東沙群島四季境外傳輸比例介於29~72%之間,而南沙群島四季境外傳輸比例介於18~60%之間。在污染源種類及其貢獻率的日夜差異方面,交通運輸、生質燃燒等日間活動污染源及焚化燃燒、燃油鍋爐、石化業、鋼鐵廠等工業性污染源的貢獻率大致呈現日間高於夜間之趨勢。
Abstract
Over the past decades, the industries and commerce rose up fastly in East Asian countries. The increase of fuel consumption and pollution emission lead to poor air quality in the region. Taiwan Strait and South China Sea are surrounded by Taiwan, China, Philippine, and Indochina Peninsula. The northeastern monsoons in winter and spring bring air pollutants (such as haze) and Asian dust to downwind region coupled with the growth of slash-and-burn in the spring in the Southeast Asia, which cause the deteroiation of ambient air across the Taiwan Strait and South China Sea via long-range transport.
Accordingly, this study aims to explore the spatiotemporal variation, chemical characteristics, and source apportionment of PM2.5 in East Asia. PM2.5 samples were collected simultaneously at the Penghu Islands, the Dongsha Islands, the Nansha Islands from August 2017 to April 2018. After sampling, PM2.5 filters were carried back to the laboratory for further conditioning, weighing, and chemical analysis. Water-soluble ions, metallic elements, carbonaceous contents, anhydrosugars, and organic acids were then analyzed to charactaize the chemical fingerprint of PM2.5 in East Asia. Furthermore, backward trajectory simulation and chemical mass balance (CMB) receptor modelling were applied to identify the potential sources of PM2.5 and their contribution in each season.Field sampling results indicated that high concentrations of PM2.5 were observed mainly in winter and spring. During the northeastern monsoons periods, anthropogenic pollutants from northern region were brought to the target area, resulting in significant increase of PM2.5 concentration. From the perspective of diurnal variation, the concentration of daytime PM2.5 was generally higher than those at nighttime at all sites in all seasons.
Chemical analytical results showed that secondary inorganic aerosols (NO3-, SO42-, and NH4+) dominated water-soluble ions, accounting for 42.4-79.9% of water-soluble ions particularly in winter and spring. Daytime PM2.5 concentration was commonly higher than that at nighttime. Crustal elements (Ca, K, Mg, Fe, Al) dominated the metallic elements in PM2.5. The concentration of hazardous metals (V, Cr, Mn, Ni, Zn, and Cd) came mainly from anthropogenic sources since fall. Moreover, organic carbon (OC) was the dominant carbonaceous species during the sampling periods, and OC/EC ratio increased during the northeastern monsoon periods. The concentrations of levoglucosan at the sampling sites were ordered as PH>DS>NS. The highest levoglucosan concentrations of 23.54 ng/m3 were observed at the Penghu Islands. Organic acids of PM2.5 at the Penghu Islands were commonly higher than those at the Dongsha Islands and the Nansha Islands. Oxalic acid was the abundant organic acids in PM2.5. The concentrations of oxalic acid at all sampling sites ranged from 5.1 to 246.2 ng/m3. The mass ratios of malonic and succinic acids (M/S ratio) in PM2.5 ranged from 0.95 to 1.41, showing that PM2.5 was mainly attributed from secondary organic aerosols (SOAs). Daytime organic acid concentrations were always higher than those at nighttime.
Results obtained from CMB receptor modeling showed that the major sources of PM2.5 at the three sampling sites were sea salts, fugitive dusts, mobile sources, secondary sulfate, and secondary nitrate. Since fall, the contribution of anthropogenic sources (incinerators, petrochemical plants, industrial boilers, secondary sulfate, secondary nnitrate) and biomass burning increased gradually. Overall, the contribution of long-range transport at the Penghu Islands, the Dongsha Islands, and the Nansha Islands accounted for 14~56%, 29~72%, and 18~60%, respectively. The contribution of anthropogenic sources (mobile sources, industrial process, industrial boilers, incinerators, and steel plants) and biomass burning in the daytime was generally higher than those at nighttime. The contribution of biomass burning to PM2.5 in winter and spring were generally higher than those in other seasons.
目次 Table of Contents
學位論文審定書 i
論文公開授權書 ii
誌謝 iii
摘要 iv
Abstract vi
目錄 ix
表目錄 xii
圖目錄 xiv
第一章 前言 1
1-1研究緣起 1
1-2研究目的 2
1-3研究範圍與架構 2
第二章 文獻回顧 5
2-1 台灣海峽與南海區域環境概況 5
2-1-1 澎湖群島 5
2-1-2 東沙群島 7
2-1-2 南沙群島 9
2-2 懸浮微粒的特性 10
2-2-1 懸浮微粒的形成機制及粒徑分佈 12
2-3 懸浮微粒的化學特性 15
2-3-1 懸浮微粒的水溶性離子成份 15
2-3-2 懸浮微粒的金屬元素成份 20
2-3-3 懸浮微粒的碳成份 24
2-3-4 懸浮微粒的脫水醣成份 29
2-3-5 懸浮微粒的有機酸成份 34
2-3-6 懸浮微粒濃度季節及日夜變化趨勢 38
2-3-7 臨海地區相關研究 42
2-4 污染源解析模式之應用 44
2-4-1 富集因子 44
2-4-2 化學質量平衡受體模式 47
2-4-4 逆軌跡模式 49
第三章 研究方法 51
3-1 細懸浮微粒之採樣規劃 51
3-1-1 採樣地點規劃 51
3-1-2 採樣時間規劃 51
3-2 細懸浮微粒之採樣方法及濃度量測 54
3-2-1 PQ-200型PM2.5採樣器 54
3-2-2質量濃度量測方法 55
3-3 細懸浮微粒之化學成份分析方法 56
3-3-1 水溶性離子成份分析方法 56
3-3-2 金屬元素成份分析方法 58
3-3-3 碳成份分析方法 59
3-3-4 脫水醣、有機酸成份分析方法 61
3-4 品保與品管 63
3-4-1 採樣方法之品保與品管 63
3-4-2 分析方法之品保與品管 64
3-5 細懸浮微粒之污染源解析方法 65
3-5-1 富集因子分析法 65
3-5-2 逆軌跡模式模擬 66
3-5-3 化學質量平衡受體模式 67
第四章 結果與討論 69
4-1台灣海峽與南海區域氣象條件分析 69
4-1-1相對溼度 69
4-1-2大氣溫度(氣溫) 70
4-1-3降雨量 71
4-2細懸浮微粒濃度時空變化趨勢分析 72
4-2-1細懸浮微粒濃度季節變化趨勢 72
4-2-2 細懸浮微粒濃度日夜變化趨勢 74
4-2-3不同傳輸路徑細懸浮微粒濃度之聚類分析 76
4-3 細懸浮微粒化學成份分析 80
4-3-1 水溶性離子成份季節及日夜變化趨勢分析 80
4-3-2 金屬元素成份季節及日夜變化趨勢分析 94
4-3-3 碳成份季節變化及日夜趨勢分析 107
4-3-4 脫水醣成份季節及日夜變化趨勢分析 112
4-3-5 有機酸成份季節及日夜變化趨勢分析 119
4-3-6 不同傳輸路徑化學成份之聚類分析 123
4-4 細懸浮微粒污染源解析 125
4-4-1 富集因子解析結果 125
4-4-2 化學質量平衡受體模式解析結果 131
第五章 結論與建議 146
5-1結論 146
5-2建議 149
參考文獻 150
附錄A分析儀器之檢量線 163
附錄B分析儀器之品保品管 174
附錄C PM2.5濃度及化學成份之原始數據 181
參考文獻 References
Ali, K., Trivedi, D.K., and Sahu, S., “Physico-chemical characterization of total suspended particulate,” Atmospheric Environment, 122, 531-540, 2015.
Allen, A.G., Nemitz, E., Shi, J.P., Harrison, R.M., and Greenwood, J.C., “Size distributions of trace metals in atmospheric aerosols in the United Kingdom,” Atmospheric Environment, 35(27), 4581-4591, 2001.
Appel, B.R., Hoffer, E.M., Kothny, E.L., Wall, S.M., Haik, M., and Knights, R.L. “Analysis of carbonaceous material in Southern California atmospheric aerosols,” Environmental Science and Technology, 13(1), 98-104, 1979.
Bartaria, D., Chandra, P., and Krishna, V., “A study on speciation and coordination tendency of glutamic acid and uracil for ternary complexation towards some toxic metal ions,” Chemical Science Review and Letters, 1(4), 201-208, 2013.
Brady, J. P., Ayoko, G. A., Martens, W. N., and Goonetilleke. A., “Enrichment, distribution and sources of heavy metals in the sediments of Deception Bay, Queensland, Australia,” Marine Pollution Bulletin, 81(1), 248-255, 2014.
Chester, M.V. and Horvath, A., “Environmental assessment of passenger transportation should include infrastructure and supply chains,” Environmental Research Letters, 4(2), 024008, 2009.
Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl, S.D., Engelbrecht, J.P., and Green, M.C., “Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational Study,” Chemosphere, 54, 185-208, 2004.
Chow, J.C., Watson, J.G., Lu, Z., Lowenthal, D.H., Frazier, C.A., Solomon, P.A., Thuillier, R.H., and Magliano, K., “Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX,” Atmospheric Environment, 30(12), 2079-2112, 1996.
Chow, J.C. “Temporal and spatial variations of PM2.5 and PM10 aerosol in the Southern California Air Quality Study,” Atmospheric Environment, 28(12), 2061-80, 1994.
Coe, H., Allan, J.D., Alfarra, M.R., Bower, K.N., Flynn, M.J., McFiggans, G.B., Topping, D.O., Williams, P.I., O’Dowd, C.D., Dall’Osto, M., Beddows, D.C.S., and Harrison, R.M., “Chemical and physical characteristics of aerosol particles at a remote coastal location, Mace Head, Ireland, during NAMBLEX,” Atmospheric Chemistry and Physics, 6, 3289-3301, 2006.
Diana, G.T., Arantza, E.F., Pablo, C.F., Marisela, M.F., Armando R.H., Rafael R.V., and Antonio, H.M., “Effects of meteorology on diurnal and nocturnal levels of priority polycyclic aromatic hydrocarbons and elemental and organic carbon in PM10 at a source and a receptor area in Mexico City,” Atmospheric Environment, 43, 2693-2699, 2009.
Engling, G., He, J., Betha, R., and Balasubramanian, R., “Assessing the regional impact of indonesian biomass burning emissions based on organic molecular tracers and chemical mass balance modeling,” Atmospheric Chemistry and Physics, 14(15), 8043-54, 2014.
Engling, G., Lee, J.J., Tsai, Y.W., Lung, S.C.C., Chou, C.C.K., and Chan, C.Y., “Size-resolved anhydrosugar composition in smoke aerosol from controlled field burning of rice straw,” Aerosol Science and Technology, 43(7), 662-672, 2009.
Esposito, K., Chiodini, P., Capuano, A., Bellastella, G., Maiorino, M.I., and Giugliano, D., “Metabolic Syndrome and Endometrial Cancer: a Meta-Analysis in Book Metabolic Syndrome and Endometrial Cancer: a Meta-Analysis,” Springer, 2014.
Fang, G.C., Chang, C.N., Chu, C.C., Wu, Y.S., Fu, P.C., Yang, I.L., and Chen, M.H., “Characterization of particulate, metallic elements of TSP, PM2.5 and PM2.5-10 aerosols at a farm sampling site in Taichung, Taiwan,” Science of the Total Environment, 308, 157-166, 2003.
Han, Y.J., Kim, H.W., Cho, S.H., Kim, P.R., and Kim, W.J., “Metallic elements in PM2.5 in different functional areas of Korea: Concentrations and source identification,” Atmospheric Research, 153, 416-428, 2015.
Heal, M.R., Hibbs, L.R., Agius, R.M., and Beverland, I.J., “Total and water-soluble trace metal content of urban background PM10, PM2.5 and black smoke in Edinburgh, UK,” Atmospheric Environment, 39(8), 1417-1430, 2005.
Hinds, W.C., “Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles,” John Willey and Sons, New York, 1999.
I.P.C.C. “Climate Change 2007: The Physical Science Basis. Agenda,” 6(07), 333, 2007.
Jacobson, M.C., Hansson, H.C., Noone, K.J., and Charlson, R.J. “Organic atmospheric aerosols: Review and state of the science.” Reviews of Geophysics, 38(2), 267-294 2000.
Kawamura, K. and Ikushima, K., “Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere,” Environmental Science and Technology, 27, 2227-2235,1993.
Khan, M.F., Hirano, K., and Masunaga, S., “Quantifying the sources of hazardous elements of suspended particulate matter aerosol collected in Yokohama, Japan,” Atmospheric Environment, 44(21), 2646-2657, 2010.
Khan, M.F., Shirasuna, Y., Hirano, K., and Masunaga, S. “Characterization of PM2.5, PM2.5–10 and PM>10 in ambient air, Yokohama, Japan,” Atmospheric Research, 96(1), 159-172, 2010.
Kim, Y. J., Woo, J. H., Ma, Y. I., Kim, S., Nam, J. S., Sung, H., and Lee, G., “Chemical characteristics of long-range transport aerosol at background sites in Korea.” Atmospheric Environment, 43(34), 5556-5566, 2009.
Kim, Y.P., Moon, K.C., Lee, J.H., and Baik, N.J., “Concentrations of carbonaceous species in particles at Seoul and Cheju in Korea,” Atmospheric Environment, 33(17), 2751-2758, 1999.
Klejnowski, K., Janoszka, K., and Czaplicka, M. “Characterization and seasonal variations of organic and elemental carbon and levoglucosan in PM10 in Krynica Zdroj, Poland,” Atmosphere, 8(10), 190, 2017.
Lee, J.J., Engling, G., Lung, S.C.C., and Lee, K.Y., “Particle size characteristics of levoglucosan in ambient aerosols from rice straw burning,” Atmospheric Environment, 42(35), 8300-8308, 2008.
Li, W., Wang, Y., Collett. Jr, J. L., Chen, J., Zhang, X., Wang, Z., and Wang, W., “Microscopic evaluation of trace metals in cloud droplets in an acid precipitation region,” Environmental Science and Technology, 47(9), 4172-4180, 2013.
Lin, J.J., “Characterization of water-soluble ion species in urban particles,” Environment International, 28, 55-61, 2002.
Liu, S., Peng, L., Wen, Y.P., Bai, H.L., Liu, F.X., Shi, M.X., and Li, L.J., “Pollution characteristics of organic and elemental carbon in PM2.5 in Taiyuan,” Huan jing ke xue, 36(2), 396-401, 2015.
Liu, Z., Hu, B., Wang, L., Wu, F., Gao, W., and Wang, Y., “Seasonal and diurnal variation in particulate matter (PM10 and PM2.5) at an urban site of Beijing: Analyses from a 9-year study,” Environmental Science and Pollution Research, 22(1), 627-642, 2015.
Manahan, S.E., “Fundamentals of Environmental Chemistry,” CRC Press, 2011.
Mangelson, N.F., Lewis, L., Joseph, J.M., Cui, W., Machir, J., Williams, N.W., Eatough, D.J., Rees, L.B., Wilkerson, T., and Jensen, D.T., “The contribution of sulfate and nitrate to atmospheric fine particles during winter inversion fogs in Cache Valley,” Journal of Air and Waste Management Association, 47, 167-175,1997.
Mariani, R.L. and de Mello, W.Z., “PM2.5–10, PM2.5 and associated water-soluble inorganic species at a coastal urban site in the metropolitan region of Rio de Janeiro,” Atmospheric Environment, 41(13), 2887-2892, 2007.
Meng, C.C., Wang, L.T., Zhang, F.F., Wei, Z., Ma, S.M., Ma, X., and Yang, J. “Characteristics of concentrations and water-soluble inorganic ions in PM2.5 in Handan City, Hebei province, China.” Atmospheric Research, 171, 133-146, 2016.
Mochida, M., Kawamura, K., Fu, P., and Takemura, T., “Seasonal variation of levoglucosan in aerosols over the western North Pacific and its assessment as a biomass-burning tracer,” Atmospheric Environment, 44, 3511-3518, 2010.
Mueller, P.K., Mosley, R.W., and Pierce, L.B., “Chemical Composition of Pasadena Aerosol by Particle Size and Time of Day: IV. Carbonate and Noncarbonate Carbon Content,” Aerosols and Atmospheric Chemistry, 295-299, 1972.
Nakata, H., Uehara, K., Goto, Y., Fukumura, M., Shimasaki, H., Takikawa, K., and Miyawaki, T., “Polycyclic aromatic hydrocarbons in oysters and sediments from the Yatsushiro Sea, Japan: Comparison of potential risks among PAHs, dioxins and dioxin-like compounds in benthic organisms,” Ecotoxicology and Environmental Safety, 99, 61-68, 2013.
Nunes, T.V. and Pio, C.A., “Carbonaceous aerosols in industrial and coastal atmospheres,” Atmospheric Environment. Part A. General Topics, 27(8), 1339-1346, 1993.
Pakkanen, T. A., “Study of formation of coarse particle nitrate aerosol,” Atmospheric Environment, 30(14), 2475-2482, 2014.
Pandis, S.N., Harley, R A., Cass, G.R., and Seinfeld, J.H., “Secondary organic aerosol formation and transport.” Atmospheric Environment, Part A. General Topics, 26(13), 2269-2282, 1992.
Pankow, J.F., “An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol.” Atmospheric Environment, 28(2), 189-193, 1994.
Park, S.H., Song, C.B., Kim, M.C., Kwon, S.B., and Lee, K.W. “Study on size distribution of total aerosol and water-soluble ions during an Asian dust storm event at Jeju Island, Korea.” Environmental Monitoring and Assessment, 93(1-3), 157-183, 2004.
Park, S.S., Cho, S.Y., Jung, C.H., and Lee, K.H., “Characteristics of water-soluble inorganic species in PM10 and PM2.5 at two coastal sites during spring in Korea,” Atmospheric Pollution Research, 7(2), 370-383, 2016.
Pashynska, V., Vermeylen, R., Vas, G., Maenhaut, W., and Claeys, M., “Development of a gas chromatographic/ion trap mass spectrometric method for the determination of levoglucosan and saccharidic compounds in atmospheric aerosols: Application to urban aerosols,” Journal of Mass Spectrometry, 37(12), 1249-1257, 2002.
Pipal, A.S. and Satsangi, P.G., “Study of carbonaceous species, morphology and sources of fine (PM2.5) and coarse (PM10) particles along with their climatic nature in India,” Atmospheric Research, 154, 103-115, 2015.
Seinfeld, J.H. and Pandis, S.N., “Atmospheric Chemistry and Physics: From Air Pollution to Climate Change,” Wiley-Interscience, New York, 2006.
Simoneit, B.R. “Biomass burning-A review of organic tracers for smoke from incomplete combustion,” Applied Geochemistry, 17(3), 129-162, 2002.
Shahid, I., Kistler, M., Mukhtar, A., Ghauri, B. M., Ramirez-Santa Cruz, C., Bauer, H., and Puxbaum, H., “Chemical characterization and mass closure of PM10 and PM2.5 at an urban site in Karachi - Pakistan,” Atmospheric Environment, 128, 114-123, 2016.
Shen, Z., Cao, J., Tong, Z., and Liu, S., “Chemical characteristics of submicron particles in winter in Xi’an,” Aerosol and Air Quality Research, 9(1), 80-93, 2009.
Stein, A., Draxler, R.R., Rolph, G.D., Stunder, B.J., Cohen, M., and Ngan, F., “NOAA’s HYSPLIT atmospheric transport and dispersion modeling system,” Bulletin of the American Meteorological Society, 96, 2059-2077, 2015.
Tang, I.N., and Munkelwitz, H.R., “Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols.” Atmospheric Environment. Part A. General Topics, 27(4), 467-473, 1993.
Tsai, J.H., Lin, J.H., Yao, Y.C., and Chiang, H.L. “Size distribution and water soluble ions of ambient particulate matter on episode and non-episode days in Southern Taiwan,” Aerosol and Air Quality Research, 12, 263-274, 2012.
Tsai, J.H., Tsai, S.M., Wang, W.C., and Chiang, H.L. “Water-soluble ionic species of coarse and fine particulate matter and gas precursor characteristics at urban and rural sites of central Taiwan,” Environmental Science and Pollution Research, 23(16), 16722-16737, 2016.
Ulas, I., “Impact of sea-salt emissions on the model performance and aerosol chemical composition and deposition in the East Mediterranean coastal regions,” Atmospheric Environment, 75, 329-340, 2013.
Voutsa, D. anf Samara, C., “Labile and bioaccessible fractions of heavy metals in the airborne particulate matter from urban and industrial areas,” Atmospheric Environment, 36(22), 3583-3590, 2002.
Wang, H.L., Qiao, L.P., Lou, S.R., Zhou, M., Ding, A.J., Huang, H.Y., Chen, J.M., Wang, Q., Tao, S.K., Chen, C.H., Li, L, and Huang, C., “Chemical composition of PM2.5 and meteorological impact among three years in urban Shanghai, China,” Journal of Cleaner Production, 112, 1302-1311, 2016.
Whitby, K.T., “The Physical Characteristics of Sulfur Aerosols,” Sulfur in the Atmosphere, pp. 135-159, 1978.
Whitby, K.H. and Sverdrup, G.M., “California aerosols: Their physical and chamical characteristics,” Environmental Science and Technology, 9, 477-517, 1980.
Wu, P.M. and Okada, K. “Nature of coarse nitrate particles in the atmosphere-A single particle approach,” Atmospheric Environment, 28(12), 2053-2060, 1994
Yao, X., Fang, M., Chan, C.K., Ho, K., and Lee, S., “Characterization of dicarboxylic acids in PM2.5 in Hong Kong,” Atmospheric Environment, 38(7), 963-970, 2004.
Yao, X., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., and Ye, B. “The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China,” Atmospheric Environment, 36(26), 4223-4234, 2002.
Yoo, J.I., Kim, K.H., Jang, H.N., Seo, Y.C., Seok, K.S., Hong, J.H., and Jang, M., “Emission characteristics of particulate matter and heavy metals from small incinerators and boilers,” Atmospheric Environment, 36(32), 5057-5066, 2002.
Yuan, C.S., Hai, C.X., and Zhao, M., “Source profiles and fingerprints of fine and coarse sands resuspended from soils sampled in Central Inner Mongolia,” Particuology, 4(6), 304-311, 2006.
Zhuang H., Chen, C.K., Fang, M., and Wexler, A.S., “Formation of nitrate and non-sea-salt sulfate on coarse particles,” Atmospheric Environment, 33(26), 4223-4233, 1999.
李崇德、許文昌、簡宏倫、謝康,台灣北部都會區氣懸微粒污染特性及其污染來源推估,第十二屆空氣污染控制技術研討會,427-433,1995。
詹俊南、張能復,台灣地區PM10污染特性分",國立台灣大學環境工程研究所碩士論文,1996。
林銳敏、黃建達、林宗毅,不同空氣品質測站粗細微粒碳成份分佈分析,氣膠科技國際研討會,1999。
鄭曼婷,台中沿海及都會區氣膠特性及來源分析,國科會/環保署科技合作研究計畫期末報告,1999。
洪崇軒,氣象條件對高雄地區空氣品質之預測及分析計畫,高雄市環境保護局研究報告,2000。
劉山豪,高雄都會區消光係數與能見度量測及細微粒污染源貢獻量解析,國立中山大學環境工程研究所碩士論文,2000。
王證權,亞洲氣膠特性實驗-台灣北海岸春季氣膠化學特性,國立中央大學環境工程研究所碩士論文,2001。
邵承宗,大陸沙塵暴對澎湖地區懸浮微粒特性之影響研究 國立中山大學環境工程研究所碩士論文,2003。
黃希爾,東亞生質燃燒對台灣高山氣膠特性的影響,國立中央大學環境工程研究所碩士論文,2004
曹國樑、張小曳、王丹、鄭方成,中國大陸生物質燃燒排放的污染物清單,中國環境科學,25(4),389-393,2005。
袁中新、洪崇軒、林啟燦、宋偉國、郭閔祥、陳威錦、蔡協宏、蘇明民,“高雄市鄰近海域空氣品質監測及模擬計畫”,高雄市政府環境保護局研究報告,2006。
黃元勳,屏東郊區大氣微粒化學組成特性探討,國立屏東科技大學環境工程與科學研究所碩士論文,2006。
翁國豪,生質燃燒氣膠長程傳輸及高山雲霧間隙氣膠特性之研究,國立中央大學環境工程研究所碩士論文,2007。
袁中新,高雄市鄰近海域空氣品質監測及模擬計畫,高雄市政府環境保護局研究報告,2007
蔡怡君,不同地區懸浮微粒成份特徵之觀測與模擬分析研究,國立雲林科技大學環境與安全衛生工程研究所碩士論文,2008。
底宗鴻,高雄地區陸域及鄰近海域懸浮微粒物化特性分析及時空分佈探討,國立中山大學環境工程研究所碩士論文,2008。
李宗璋,金廈地區懸浮微粒物化特性分析及污染源解析探討,國立中山大學環境工程研究所碩士論文,2009。
郭素卿、蔡瀛逸,針葉林中大氣氣膠二元酸之生物污染源排放潛勢研究,國科會補助專題研究計畫成果報告,2009。
段鳳魁、賀克斌、劉咸德,北京PM2.5中有機酸的污染特徵及來源,中國環境科學,26(6),1139-1145,2009。
劉育甫,高雄沿海地區臭氧及其前驅物垂直剖面分佈特性及相關性分析探討,國立中山大學環境工程研究所碩士論文,2010。
楊衛芬、銀燕、魏玉香、陳魁,霾天氣下南京 PM2.5中金屬元素污染特徵及來源分析,中國環境科學,30(1),12-17,2010。
蔡協宏,南台灣陸域及鄰近海域受海陸風及東北季風影響之空氣污染物傳輸及擴散研究,國立中山大學環境工程研究所博士論文,2010。
吳仲翼,廈門灣大氣懸浮微粒濃度日夜變化趨勢分析及污染源指紋特徵探討,國立中山大學環境工程研究所碩士論文,2011。
蘇國鑫,化學品質平衡受體模型在大氣細顆粒物 PM 2.5源解析中的應用,環境,96-97,2011。
高曉梅,我國典型地區大氣PM2.5水溶性離子的理化特徵及來源解析,山東大學博士學位論文,2012。
東靜姍,2006-2012南台灣大氣細懸浮微粒濃度特性探討-以原高雄市為例,屏東科技大學環境工程與科學系所學位論文,2013。
古金霞、吳麗萍、霍光耀、白志鵬、杜世勇、劉愛霞、解以揚,天津市 PM2.5中水溶性無機離子污染特徵及來源分析,中國環境監測,29,30-34, 2013。
廖建欽,閩江口海島及陸域大氣懸浮微粒濃度季節變化趨勢分析及污染源貢獻量探討,國立中山大學環境工程研究所碩士論文,2013。
張正馳,馬祖地區PM2.5濃度時空分佈及化學成份分析,國立中山大學環境工程研究所碩士論文,2014。
黃麗坤、王廣智、王琨,哈爾濱市沙塵期大氣顆粒物物化特徵及傳輸途徑分析,中國環境科學,34(8),1920-1926,2014。
蘇彥綸,馬祖地區細懸浮微粒濃度晝夜差異解析及污染源指紋特徵之探討,國立中山大學環境工程研究所碩士論文,2015。
黃麗坤、王薇、王琨、洪理靖、王敬元,哈爾濱市采暖期PM1中金屬元素的污染特徵。黑龍江大學自然科學學報,33(6),808-812,2016。
李宗璋,台灣海峽海岸及海島地區大氣懸浮微粒跨境傳輸、海陸域時空分佈及物化特性解析,國立中山大學環境工程研究所博士論文,2016。
曾佑綸,台灣南部及菲律賓北部大氣細懸浮微粒之化學成份特徵分析及交互影響探討,國立中山大學環境工程研究所碩士論文,2016。
莊學龍,台灣海峽及南海交界區域長程傳輸之細懸浮微粒時空分佈、指紋特徵及污染源解析,國立中山大學環境工程研究所碩士論文,2016。
田鵬山、曹軍驥、韓永明、張寧寧、張蓉、劉隨心,關中地區冬季PM2.5碳氣溶膠的污染特徵及來源解析,中國環境科學,37(2),427-433,2016。
姜彧波,巴士海峽、台灣海峽及南海交界區域PM2.5晝夜濃度變化及化學成份特徵分析,國立中山大學環境工程研究所碩士論文,2017。
喬寶文、劉子銳、胡波、劉景雲、逄妮妮、吳方堃、徐仲均、王躍思,“北京冬季PM2.5中金屬元素濃度特徵和來源分析”,環境科學,38-3,2017。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code