Responsive image
博碩士論文 etd-0718100-165100 詳細資訊
Title page for etd-0718100-165100
論文名稱
Title
Pb(Fe2/3W1/3)O3陶瓷的晶核-晶殼結構之探討
A study on the core-shell structure of Pb(Fe2/3W1/3)O3 ceramics
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor

口試委員
Advisory Committee
口試日期
Date of Exam
2000-06-19
繳交日期
Date of Submission
2000-07-18
關鍵字
Keywords
晶核-晶殼結構
core-shell
統計
Statistics
本論文已被瀏覽 5728 次,被下載 1870
The thesis/dissertation has been browsed 5728 times, has been downloaded 1870 times.
中文摘要
Pb(Fe2/3W1/3)O3(PFW)是強電性弛緩體材料,具有無序的鈣鈦礦結構 ,亦即Fe3+和W6+離子在結構中八面體位置(octahedral site)任意的排列,是已知的低溫多層陶瓷電容材料之一。

經由液相燒結的PFW陶瓷,呈現晶核與晶殼結構,其中晶核是Fe豐富的區域,而晶殼是W豐富的區域,長時間的熱處理,晶粒會藉由擴散來達成晶粒內晶核與晶殼成份濃度的均質化。本論文藉由TEM的觀察與EDS的分析,來說明長時間熱處理,晶核-晶殼間成份濃度的變化

一般認為A(B1 , B2)O3鈣鈦礦系統的有序結構來自於B-site離子的有序排列,無論晶核或晶殼都出現F-spot(超晶格繞射(1/2 1/2 1/2)),表示晶核或晶殼都在做某種程度的有序排列,因此Fe與W的排列方式或是空缺的形式,都可能是F-spot(超晶格繞射(1/2 1/2 1/2))生成的原因。


Abstract
none

目次 Table of Contents
一、 緒論………………………………………………..1
1-1前言……………………………………………1
1-2本研究之重點及目的…………………………2
二、 文獻回顧………………………………………….3
2-1強電性陶瓷材料………………………………3
2-2弛緩體………………………………………..6
2-2-1弛緩體簡介…………………………..6
2-2-2有序-無序(order-disorder)結構………10
2-3擴散式的相變化(DPT)………………………..14
2-3-1 擴散式相變化的定義…………………14
2-3-2 擴散式相變化的生成機構模型………15
2-4 晶核-晶殼(Core-Shell) 結構………………….18
2-4-1 core-shell 結構簡介…………………….18
三、 實驗步驟及方法…………………………………20
3-1粉體製備…………………………………………20
3-2 顯微組織觀察……………………………………20
3-2-1 X光繞射分析…………………………….20
3-2-2 SEM顯微結構觀察………………………21
3-2-3 TEM顯微結構觀察………………………21
3-3 密度測量方法……………………………………22
3-3-1 理論密度………………………………….22
3-3-2 阿基米德法測量密度…………………….22
四、 實驗結果…………………………………………….26
4-1 密度………………………………………………26
4-2 X-ray結果………………………………………..26
4-3 SEM結果…………………………………………27
4-4 TEM觀察………………………………………...37
五、 討論………………………………………………….53
5-1 Core-shell結構的型態………………………….53
5-2 Core-shell 的生成原因………………………….54
5-3 Core-shell 結構與DPT的關係………………..61
5-4 F-spot的成因……………………………………61
六、 結論…………………………………………………..64
References…………………………………………………65
Appendix

參考文獻 References
References:
[1] W. H. Tzing, W. H. Tuan, and H. L. Lin, “The effect of microstructure on the electrical properties of NiO-doped BaTiO3,” Ceramics International 25, 425-30 (1999).
[2] D. Hennings and R. Rosenstein, ”Temperature-stable dielectrics based on chemically inhomogeneous BaTiO3,” J. Am. Ceram. Soc., 67 [4] 249-54 (1984).
[3] T. R. Shrout, and A. Halliyal, “Preparation of lead-base ferroelectric for capacitors,” Am. Ceram. Soc. Bull., 66 [4] 704-11 (1987).
[4] G. A. Smolenskii, “Physical phenomena in ferroelectrics with diffused phase transition,” J. Phys. Soc. Jpn., 28, 26-37 (1970).
[5] B. N. Rolov, “Effect of composition fluctuations on unsharp ferroelectric phase transitions,” Sov. Phys. – Solid State (Engl. Transl.)., 6 [7] 1676-78 (1965).
[6] L. E. Cross, “Relaxor ferroelectric,” Ferroelectrics (Engl. Transl.)., 76, 241-67 (1987).
[7] G. A. Smolenskii, A. I. Agranovskaya, and V. A. Isupov, “New ferroelectrics of complex compound,” Sov. Phys. Solid State., 1, 907-908 (1959).
[8] M. P. Kassarjian, R. E. Newnham, and J. V. Biggers, “Sequence of reactions during calcining of a lead-iron niobate dielectric ceramic,” Am. Ceram. Soc. Bull., 64 [8] 1108-11 (1985).
[9] M. Yonezawa, “Low-firing multilayer capacitor materials,” Am. Ceram. Soc. Bull., 62 [12] 1375-83 (1983).
[10] M. Yonezawa, and H. Kojima, “Dielectric and piezoelectric properties of the solid solution system Pb(Fe2/3W1/3)O3-PbZrO3,” Jpn. J. Appl. Phys., 36 [9B], 6046-50 (1997).
[11] L. Zhou, P. M. Vilarinho, and J. L. Baptista, “Effect of annealing treatment on the dielectric properties of manganese-modified Pb(Fe2/3W1/3)O3 ceramics,” J. Mater. Sci., 33, 2673-2677 (1998).
[12] C. H. Lu, N. Ishizawa, and K. Shinozaki, “Synthesis and cell refinement of PbFe2/3W1/3O3 and pyrochlore-related phase in the Pb-Fe-W-O system,” J. Mater. Sci. Lett., 7, 1078-79 (1988).
[13] L. Zhou, P. M. Vilarinho, and J. L. Baptista, “Stoichiometric dependense of the aging phenomena in lead iron tungstate Ceramics,” J. Am. Ceram. Soc., 79 [9] 2436-42 (1996).
[14] K. Park, L. Salamanca-Riba, M.Wutting and D. Viehland, ”Ordering in lead magnesium niobate solid solutions,” J. Mater. Sci., 29, 1284-89 (1994).
[15] L. Zhou, P. M. Vilarinho, and J. L. Baptista, “Ordering in lead iron tungstate relaxor ceramics,” J. Eur. Ceram. Soc., 18, 1383-1387 (1998).
[16] L. Zhou, P. M. Vilarinho, and J. L. Baptista, “Dielectric properties and aging effect of manganese modified lead iron tungstate relaxor ceramics,” Mater. Res. Bull., 31 [6] 699-708 (1996).
[17] L. Zhou, P. M. Vilarinho, and J. L. Baptista, “Dielectric properties and aging effect of manganese modified lead iron tungstate relaxor ceramics,” Mater. Res. Bull., 31 [6] 699-708 (1996).
[18] P. M. Vilarinho, and J. L. Baptista, “Effect of excess of iron oxide and lead oxide on the microstructure and dielectric properties of lead-iron tungstate ceramics,” J. Eur. Ceram. Soc., 11, 407-415 (1993).
[19] C. H. Lu, “Compositional effect on the liquid-phase formation in lead iron tungstate ferroelectric ceramics,” J. Am. Ceram. Soc., 77 [10] 2529-35 (1994).
[20] C. H. Lu, K. Shinozaki, and N. Mizutani, “Formation process and microstructural evolution of sol-gel ferroelectric lead iron tungstate ceramics,” J. Am. Ceram. Soc., 75 [5] 1303-306 (1992).
[21] N. Mizutani, C. H. Lu, K. Shinozaki, and M. Kato, “Formation of high-temperature liquid phase during the sintering of Pb(Fe2/3W1/3)O3,” J. Am. Ceram. Soc., 73 [5] 1214-20 (1990).
[22] G. H. Haertling, “Ferroelectric ceramics : history and technology,” J. Am. Ceram. Soc., 82 [4] 797-818 (1999).
[23] W. D. Kingery, H. N. Bowen, and D. R. Uhlmann, “Introduction to ceramic,” 2nd Edition, pp964-72, A Wiley-Interscince Publication(USA).
[24] Griffen, “Silicate crystal chemistry,” OUP, 1992.
[25] N. Setter and L. E. Cross, “The contribution of structural disorder to diffuse phase transition in ferroelectrics,” J. Mater. Sci., 15, 2478-82(1980).
[26] N. Setter and L. E. Cross, ”The role of B-site cation disorder in diffuse phase transition behavior of peroskite ferroelectrics,” J. Appl. Phys., 51[8] 4356-60 (1980).
[27] M. P. Harmer, A. Bhalla, B. Fox, and L. E. Cross, ”Electorn microscopy of ordered domains in lead scandium tantalate Pb(Sc0.5Ta0.5)O3,” Mater. Lett., 2[4A] 278-80 (1984).
[28] C. A. Randall and A. S. Bhalla, ”Nanostructural-properties relations in complex lead perovskites,” Jpn. J. Appl. Phys., 29[2] 327-33 (1990).
[29] M. A. Akbas and P. K. Davies, ”Domain growth in Pb(Mg1/3Ta2/3)O3 perovskite relaxor ferroelectric oxides,” J. Am. Ceram. Soc., 80[11] 2933-36 (1997).
[30] D. Hennings, A. Schnell, and G. Simon, ” Diffuse ferroelectric phase transition in Ba(Ti1-yZry)O3 ceramics,” J. Am. Ceram. Soc., 65[11] 539-44 (1982).
[31] C.-C. Lee, C.-C. Chou, and D.-S. Tsai, “Effect of La/K A-site substitutions on the ordering of Ba(Zn1/3Ta2/3)O3,” J. Am. Ceram. Soc., 80[11] 2885-90 (1997).
[32] L. J. Lin and T. B. Wu, ”Ordering behavior of lead magnesium niobate ceramics with A-site substitution,” J. Am. Ceram. Soc., 73[5] 1253-56 (1990).
[33] J. Chen, H. M. Chan, and M. P. Harmer, “Ordering structure and dielectric properties of undoped and La/Na-Doped Pb(Mg1/3Nb2/3)O3,” J. Am. Ceram. Soc., 72[4] 593-98 (1989).
[34] H. M. Chan and M. P. Harmer, ”Microstructures of high dielectric constant materials,” Ceramic Microstructures’86. Edited by J. A. Pask Randall and A. G. Evans. Plenum Publishing Corp.,New York, 1988.
[35] A. D. Hilton, D. J. Barber, C. A. Randall, and T. R. Shrout, ”On short range ordering in the perovskite lead magnesium niobate,” J. Mater. Sci., 25, 3461-66 (1990).
[36] H. B. Krause, J. M. Cowley, and J. Whealty, ”Short-range ordering in Pb(Mg1/2Nb1/3)O3,” Acta. Crystallogr., 35A, 1015-17 (1979).
[37] T. Mishima, H. Fujioka, S. Nagakari, K. Kamigaki, and S. Shinji, ”Lattice image observation of nanoscale ordered regions in Pb(Mg1/3Nb2/3)O3,” Jpn. J. Appl. Phys., 36. Pt.1, [9B] 6141-6144 (1997).
[38] P. K. Davies, J. Tong, and T. Negas, ”Effest of ordering-induced domain bounaries on low-loss Ba(Zn1/3Ta2/3)3-BaZrO3 perovskite microwave dielectrices,” J. Am. Ceram. Soc., 80[7] 1727-40 (1997).
[39] F. Galasso and J. Pyle, ”Ordering in compounds of the A(B’0.33Ta”0.67)O3 type,” Inorg. Chem. 2[3] 482-84 (1963).
[40] B. S. Rawal, M. Kahn, and W. R. Buessem, “Grain core-grain shell structure in barium titanate-based dielectric,” pp172-88 in Advances in Ceramics, Vol. 1, Grain Boundary Phenomena in Electronic Ceramics. Edited by L. M. Levinson. American Ceramic Society, Columbus, OH, 1981.
[41] C. A. Randall, D. J. Barber, R.W. Whatmore, and P. Groves, ”A TEM study of ordering in the perovskite Pb(Sc1/2Ta1/2)O3,” J. Mater. Sci., 21, 4456-62 (1989).
[42] J. S. Kim, and S. J. Kang, “Formation of core-shell structure in the BaTiO3 -SrTiO3 System,” J. Am. Ceram. Soc., 82 [4] 1085-88 (1999).
[43] R. Clarke and J. C. Burfoot, “The diffuse phase transition in potassium strontium niobate,” Ferroelectrics, 8, 505-506 (1974).
[44] H. Y. Lu, J. S. Bow, and W. H. Deng, “Core-shell structure in ZrO2-modified BaTiO3 ceramics,” J. Am. Ceram. Soc., 73[12] 3562-68 (1990).
[45] H. T. Martirena and J. C. Burfoot, “Grain-size effects on properties of some ferroelectric ceramics,” J. Phys., c7, 3182-92 (1974).
[46] W. R. Buessem, L. E. Cross, and A. K. Goswami, “Phenomenological theory of high permitivity in fine-grained barium titanate,” J. Am. Ceram. Soc., 49[1] 33-36 (1966).
[47] W. R. Buessem, L. E. Cross, and A. K. Goswami, “Effect of two-dimensional pressure on the permittivity of fine-and coarse-grains barium titanate,” J. Am. Ceram. Soc., 49[1] 33-36 (1966).
[48] D. Hennings, “BaTiO3 based ceramic materials for dielectric use,” Int. J. High Technol. Ceram., 3, 91-111 (1987).
[49] K. Kinoshita, and A. Yamaji, “Grain-size effects on dielectric properties in barium titanate ceramics,” J. Appl. Phys., 47[1] 371-73 (1976).
[50] P. Murugaraj, T. N. Kutty, and M. S. Rao, “Diffuse phase transformation in neodymium-doped BaTiO3 ceramics,” J. Mater. Sci., 21, 3521-27 (1986).
[51] L.Benguigui and K. Bethe, “Diffused phase transition in BaxSr1-xTiO3 single crystal,” J. Appl. Phys., 47 [7] 2787-91 (1976).
[52] D. Barb, E. Barbulescu, and A. Barbulescu, “Diffuse phase transitions and ferroelectric-paraelectric diagram for the BaTiO3-SrTiO3 System,” Phys. Stat. Sol. (a), 74, 79-83 (1982).
[53] G. Burns, and F. H. Dacol, “Crystalline ferroelectric with glassy polarization behavior,” Phys. Rev. B, 28 [5] 2527-30 (1983).
[54] T. Mishima, K. Kamigaki, and S. Nambu, “Core/shell structure in Pb(Mg1/3Nb2/3)O3-PbTiO3,” Jpn. J. Appl. Phys., 37, 5253-56 (1998).
[55] Y. Park and H. G. Kim, “Dielectric temperature characteristics of cerium-modified barium titanate ceramics with core-shell grain structure,” J. Am. Ceram. Soc., 80 [1] 106-12 (1997).
[56] H. Kishi, Y. Okino, M. Honda, Y. Iguchi, and M. Imaeda, “The effect of MgO and rare-earth oxide on formation behavior of core-shell structure in BaTiO3,” Jpn. J. Appl. Phys., 36 (Part 1) [9B] 5954-57 (1997).
[57] S. K. Chiang, W. E. Lee, and D. W. Readey, “Core-shell structure in doped BaTiO3,: Ceram. Bull., 66 [8] 1230 (1987).
[58] Y. Inomata, H. Chazono, and H. Kishi, “Microstructure and dielectric properties of SrTiO3 -PbTiO3-CaTiO3 ceramics,” Jpn. J. Appl. Phys., 35 (Part 1) [9B] 5132-36 (1996).
[59] F. Uchikoba and K. Sawamura, “Domain structure in excess-WO3 lead complex perovskite,” J. Am. Ceram. Soc., 77 [5] 1345-51 (1994).
[60] F. Uchikoba and K. Sawamura, “JIS YB lead complex perovskite ferroelectric material,” Jpn. J. Appl. Phys., 31 (Part 1) [9B] 3124-27 (1992).
[61] F. Uchikoba and K. Sawamura, “Core-shell domain structure in lead complex perovskite material,” Jpn. J. Appl. Phys., 32 (Part 1) [9B] 4258-60 (1993).
[62] Y. Mizuno, Y. Okino, N. Kohzu, H. Chazono, and H. Kishi, “Influence of the microstructure evolution on electrical properties of multilayer capacitor with Ni electrode,” Jpn. J. Appl. Phys., 37 (Part 1) [9B] 5227-31 (1998).
[63] S. K. Chang, W. E. Lee, and D. W. Readey, ”Core-shell structure in doped BaTiO3,” Am. Ceram. Soc. Bull., 66[8] 1230 (1987).


電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code