Responsive image
博碩士論文 etd-0718101-131536 詳細資訊
Title page for etd-0718101-131536
論文名稱
Title
以觸媒濕式氧化法處理鐵氰錯合物或2,4-二氯酚水溶液之研究
Study on Catalytic Wet Air Oxidation of Ferrocyanide or 2,4-Dichlorophenol Solutions
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
228
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-07
繳交日期
Date of Submission
2001-07-18
關鍵字
Keywords
鐵氰錯合物、Microtox®毒性試驗法、活化能、濕式氧化法、4-二氯酚、2、活性污泥、毒性單位、觸媒
Sludge, Ferrouscyanide, 4-dichlorophenol, 2, Wet Air Oxidation, Active Engery
統計
Statistics
本論文已被瀏覽 5661 次,被下載 3513
The thesis/dissertation has been browsed 5661 times, has been downloaded 3513 times.
中文摘要
本研究以人工配製之鐵氰錯合物(Fe(CN)64-)或2,4-二氯酚(2,4-DCP)水溶液為研究對象,旨在探討觸媒濕式氧化(CWAO)反應系統中,各項操作條件對Fe(CN)64-或對2,4-DCP處理效能之影響、反應動力特性;亦針對2,4-DCP經CWAO程序之處理液進行生物毒性測試。此外,探討處理液之生物分解性(BOD5/COD比值)變化情形。
添加觸媒Cu2+可提升WAO程序對Fe(CN)64‾溶液之處理效能,係因可以大幅降低第一階段反應活化能所致。但是,添加Ce3+或Mn2+為觸媒之CWAO程序中,對Fe(CN)64‾之去除效能反而較WAO程序降低許多。在第一階段反應期間,未添加任何處媒之WAO程序處理Fe(CN)64‾溶液過程中,其反應活化能(Ea)高達40.5 KJ mol-1,而在添加Cu2+、Ce3+或Mn2+為觸媒之CWAO處理程序中,Ea值則分別降低至14.1、16.0和20.4 KJ mol-1。顯然添加觸媒於WAO處理程序中,可因大幅降低反應活化能而提昇其處理效能。
單純靠熱解作用不易將2,4-DCP分解,若將2,4-DCP溶液改以WAO程序處理,則2,4-DCP之轉化率較高溫熱解程序大幅提昇,且隨溫度之提升而增加。使用Mn/Ce混成燒結觸媒之濕式氧化程序中,2,4-DCP總去除率大致隨Mn/Ce莫耳比值之增加而提高,且以莫耳比值為7:3之觸媒具最佳處理效能(96.45%)。針對相同濃度之2,4-DCP溶液,CWAO處理程序可以比WAO處理程序,在較低反應溫度及較短反應停留時間之條件下,達到近似的2,4-DCP去除率。此外,在達到相同之2,4-DCP溶液中COD值去除效能需求時,就反應溫度而言,CWAO處理程序約可較WAO處理程序調降40 K。
在進行半批次式濕式氧化2,4-DCP反應過程中,WAO程序之第一階段及第二階段反應活化能,分別為13.6和23.7 KJ mol-1;而CWAO處理程序(使用Mn/Ce (7:3)混成燒結觸媒)則分別為9.1和5.7 KJ mol-1。在較低進流液空間流速(S.V.≦11.0 hr-1)操作之連續式濕式氧化反應,其對2,4-DCP溶液中COD值之去除速率與COD值,則是以二階反應關係式與實驗數據最為接近,且反應活化能和頻率因數常數經計算分別為11.9 J mol-1和0.96 sec-1。
當反應溫度高於433 K時,若控制S.V.≦11.0 hr-1,則CWAO程序處理液之TUa,15值皆可能小於8.26。換言之,2,4-DCP溶液經由CWAO程序處理後(使用Mn/Ce (7/3)混成燒結觸媒),可大幅降低原廢水之生物毒性。就溶液之COD值而言,併用連續式CWAO程序(使用Mn/Ce (7:3)混成燒結觸媒)及活性污泥程序,可處理低於500 mg L-1之2,4-DCP溶液至符合放流水標準。



Abstract
The objectives of this research were to obtain the optimum operating conditions for a catalytic wet air process and to investigate their reaction kinetics. Either the ferrouscyanide (Fe(CN)64-) or the 2,4-dichlorophenol (2,4-DCP) solution was treated by the catalytic wet air oxidation (CWAO) process using three metal ions (Cu2+, Ce3+, and Mn2+) as catalysts or with the Mn/Ce composite oxide catalysts, respectively. In addition, the biodegradability of the effluent derived from the CWAO (2,4-DCP) process was studied.
Results show that the effect of addition of the Cu2+ ion on the wet air oxidation (WAO) of Fe(CN)64- solution is significant because the Cu2+ ion plays in a role of catalyst, which may lower the activation energy (Ea) during the first-stage of the CWAO process. However, either the Ce3+ or Mn2+ ion did an adverse effect on the Fe(CN)64- removal, even they had a worse removal than that did by the WAO run without any catalyst addition. The Ea value of the first-stage in the WAO of the Fe(CN)64- solution process was calculated to be 40.5 KJ mol-1. On the other hand, the Ea values of the CWAO process with an addition of the Cu2+, Ce3+, or Mn2+ ion, were reduced to 14.1, 16.0, and 20.4 KJ mol-1, respectively. Obviously, the values of Ea can be reduced to promote the pollutants removal by an addition of suitable catalysts into the WAO process.
It was observed that 2,4-DCP is difficult to be decomposed in the thermal pyrolysis process, but the conversion of 2,4-DCP is significant in the WAO process. With an application of the Mn/Ce composite oxide catalyst in the CWAO process to treat the 2,4-DCP solutions resulted in a better removal than that did by the WAO process. The higher the reaction temperature was applied, the higher 2,4-DCP removal was obtained. Also, the catalyst in a higher Mn/Ce molar ratio would increase the removal of 2,4-DCP during the CWAO runs, while the catalyst in a Mn/Ce molar of 7:3 showed the best 2,4-DCP removal of 96.5%. It is suggested that the reaction temperature of the CWAO process could be controlled 40 K lower than that required in the WAO run to reach an equivalent 2,4-DCP removal efficiency.
The Ea value of the WAO of 2,4-DCP process performed in a semi-batch type reactor were 13.6 and 23.7 KJ mol-1, respectively, for the first-stage and the second-stage reactions. However, the Ea values of the both reaction stages in the CWAO of 2,4-DCP run were reduced to 9.1 and 5.7 KJ mol-1, respectively. If the CWAO of 2,4-DCP was performed in an up-flowing fixed -bed reactor, a second-order formula was found. Also, the activation energy and the frequency constant of the CWAO of 2,4-DCP run were calculated to be 11.9 KJ mol-1 and 0.96 sec-1.
In the Microtox® toxicity tests, the TUa,15 values of the effluent from the CWAO run were below 8.26, when the CWAO process was operated at 433 K and at a space velocity of less than 11.0 hr-1, and the Mn/Ce (7:3) composite oxide as a catalyst. On the other hand, the toxicity of the 2,4-DCP could be reduced greatly by being treated in the CWAO process over the Mn/Ce (7:3) composite oxide catalyst. It is possible to treat the 2,4-DCP solution in a concentration less than 500 mg L-1 to meet the discharging regulation standards using a CWAO run, and followed by an activated sludge unit in which the retention time of the wastewater could be sorter than twelve hours.



目次 Table of Contents
謝誌 ……………………………………………………………....… I
摘要 ………………………………………………………………… I I
英文摘要 ……………………………………………………… … IV
目錄 ………………………………………………………………… VII
表目錄 ……………………………………………………………… XIV
圖目錄 …………………………………………………………… XVII
符號說明 ………………………………………………..……… XXIV

第一章 緒論 ………………………………………………………... 1-1
1-1 研究緣起與目的 …………………………………………... 1-1
1-2 研究內容及目的 ……………………………………….….. 1-4

第二章 文獻回顧 …………………………………………………… 2-1
2-1 鐵氰錯合物特性及處理方法 …………………………….. 2-1
2-2 酚及氯酚類化合物之用途及污染來源 ………………….. 2-3
2-3 酚及氯酚類化合物之物理及化學特性 ………………….. 2-4
2-4 酚及氯酚類化合物之生物毒性及對人體健康之影響 ….. 2-5
2-5 含酚及氯酚類化合物之廢水處理法 …………………….. 2-6
2-5-1 溶劑萃取回收法 ……………………………………. 2-8
2-5-2 活性碳吸附法 ………………………………………. 2-9
2-5-3 焚化法 ………………………………………………. 2-11
2-5-4 生物處理法 …………………………………………. 2-12
2-5-5 光催化處理法 ………………………………………. 2-14
2-5-6 濕式氧化法 ……………………………………….... 2-18
2-5-7 超臨界濕式氧化法 …………………………………. 2-25
2-5-8 觸媒濕式氧化法 …………………………………… 2-26
2-6 濕式氧化程序處理液之生物毒性監測 …………………. 2-31
2-6-1 生物毒性試驗 ……………………………………… 2-32
2-6-2 微生物毒性試驗法 ………………………………… 2-34
2-7 濕式氧化程序處理液之生物分解性 …………………….. 2-38

第三章 研究方法 …………………………………………………. 3-1
3-1 實驗設備 ………………………………………………… 3-1
3-1-1 批次式觸媒濕式氧化程序處理設備 …………………. 3-1
3-1-2 連續式異相觸媒濕式氧化程序處理設備 ……………… 3-2
3-1-3 Mn/Ce混成燒結觸媒製備裝置 …………………… 3-6
3-1-4 連續式活性污泥馴養裝置 ………………………… 3-6
3-1-5 生物急毒性試驗設備及裝置 ……………………… 3-8
3-1-6 樣品水質分析儀器及設備 ………………………… 3-12
3-1-7 樣品中有機酸產物之微透析儀器及設備 ………… 3-13
3-1-8 連續式生物處理裝置 ……………………………… 3-15
3-2 實驗材料及製備方法 ……………………………………. 3-16
3-2-1 Mn/Ce共沉澱燒結觸媒 …………………………… 3-16
3-2-2 藥品配製 …………………………………………… 3-16
3-2-3 其他實驗器材 ……………………………………… 3-27
3-3 實驗方法 ………………………………………………… 3-30
3-3-1 高溫水解鐵氰錯合物處理程序 …………………… 3-30
3-3-2 未添加觸媒之濕式氧化鐵氰錯合物處理程序 ……. 3-31
3-3-3 添加均相觸媒之濕式氧化鐵氰錯合物處理程序 … 3-32
3-3-4 高溫水解2,4-二氯酚處理程序 ……………………. 3-33
3-3-5 未添加觸媒之濕式氧化2,4-二氯酚處理程序 ….… 3-34
3-3-6 添加Mn/Ce混成燒結觸媒之批次式濕式氧化
2,4-二氯酚處理程序 ……………………….….….. 3-34
3-3-7 添加Mn/Ce混成燒結觸媒之連續式濕式氧化
2,4-二氯酚處理程序 ……………………….……… 3-35
3-3-8 Microtox®生物毒性標準試驗法 …………………. 3-37
3-3-9 好氧菌比攝氧率生物毒性試驗法 …………….….. 3-40
3-3-10 觸媒濕式氧化程序之處理液再經生物處理法 .… 3-43
3-3-11 好氧菌菌種鑑定 …………………………….…… 3-44
3-3-12 產物分析 …………………………….…………… 3-48
3-4 理論及原理應用 ………………………………....……… 3-53
3-4-1 濕式氧化程序之反應動力模式 …………….….…... 3-53
3-4-2 濕式氧化反應活化能之推估 ……………………..… 3-57
3-4-3 濕式氧化或觸媒濕式氧化程序處理效能之評估 …. 3-57
3-4-4 生物分解性之評估 …………………………...….… 3-58
3-4-5 生物毒性試驗結果之表示 ………………………… 3-59
3-4-6 WAO(或CWAO)程序處理2,4-DCP溶液之
碳平衡計算 ………………………………………… 3-62
3-4-7 觸媒比表面積分析原理及計算方法 ………………. 3-62
3-4-8 水質定量分析之品值控制 …………………………. 3-64

第四章 結果與討論 ……………………………………………… 4-1
4-1 溫度對熱分解及濕式氧化程序處理Fe(CN)64‾
效能之影響 ……………………………………………….. 4-1
4-2 pH值對熱分解及濕式氧化程序處理Fe(CN)64‾
效能之影響 ……………………………………………….. 4-3
4-3 氧氣分壓力對濕式氧化程序處理Fe(CN)64‾
效能之影響 ……………………………………………….. 4-4
4-4 Fe(CN)64‾初始濃度對濕式氧化程序處理Fe(CN)64‾
效能之影響 ……………………………………………….. 4-8
4-5 添加觸媒對濕式氧化程序處理Fe(CN)64‾效能之影響 …. 4-9
4-6 添加觸媒對濕式氧化程序去除Fe(CN)64‾溶液中
COD值之影響 ……………………………………………. 4-11
4-7 添加觸媒對濕式氧化程序處理Fe(CN)64‾溶液
反應活化能之影響 ……………………………………….. 4-13
4-8 Mn/Ce混成燒結觸媒之特性分析 ……………………….. 4-17
4-8-1 Mn/Ce混成燒結觸媒之比表面積和平均孔徑 ……. 4-18
4-8-2 Mn/Ce混成燒結觸媒之能量分散分析儀(EDS)
分析特性圖譜 ………………………………………. 4-17
4-8-3 Mn/Ce混成燒結觸媒之掃描式電子顯微鏡(SEM)
分析特性圖譜 ………………………………………. 4-21
4-9 溫度對熱分解及濕式氧化程序處理2,4二氯酚
效能之影響 ……………………………………………….. 4-25
4-10 pH值對濕式氧化程序處理2,4-DCP效能之影響 ………. 4-27
4-11 氧氣分壓力對濕式氧化程序處理2,4-DCP效能之影響 .... 4-28
4-12 2,4-二氯酚初始濃度對濕式氧化程序處理效能之影響 … 4-32
4-13 添加Mn/Ce混成燒結觸媒對WAO程序處理
2,4-DCP效能之影響 …………………………………….. 4-34
4-13-1 觸媒中Mn/Ce莫爾比值對2,4-DCP去除率之影響 … 4-35
4-13-2 連續式觸媒濕式氧化2,4-DCP程序之處理效能 …. 4-37
4-14 2,4-二氯酚初始濃度對觸媒濕式氧化程序
處理效能之影響 …………………………………………. 4-37
4-15 Mn/Ce觸媒對半批次式濕式氧化程序去除2,4-DCP
溶液中COD值之影響 …………………………………… 4-41

4-16 Mn/Ce觸媒對半批次式濕式氧化程序處理2,4-DCP
溶液反應活化能之影響 …………………………………. 4-43
4-17 Mn/Ce觸媒對連續式濕式氧化程序去除2,4-DCP
溶液中COD值之影響 …………………………………… 4-46
4-18 Mn/Ce觸媒對連續式濕式氧化程序處理2,4-DCP
溶液反應活化能之影響 ………………………………… 4-48
4-19 Mn/Ce觸媒對連續式觸媒濕式氧化程序處理
2,4-DCP溶液之Cl-離子濃度之影響 …………………… 4-50
4-20 Mn/Ce觸媒對連續式觸媒濕式氧化程序處理
2,4-DCP溶液之TOC值之影響 …………………………. 4-52
4-21 Mn/Ce觸媒對濕式氧化程序處理2,4-DCP溶液
生物分解性之影響 ………………………………….…… 4-55
4-22 併用觸媒濕式氧化程序及活性污泥程序處理
2,4-DCP溶液至放流水標準之可行性 ………………….. 4-58
4-23 好氧菌菌種鑑定 …………………………………………. 4-59
4-24 Mn/Ce觸媒對2,4-DCP溶液經濕式氧化程序處理液
生物毒性之影響 …………………………………………. 4-61
4-24-1 Microtox®毒性試驗 ……………………………….. 4-63
4-24-2 好氧菌比攝氧率毒性試驗 ………………………… 4-64
4-25 觸媒濕式氧化程序處理2,4-DCP溶液之產物分析
及反應路徑推估 …………………………………………. 4-67
4-26 Mn/Ce(7:3)混成燒結觸媒活性衰退試驗 …………….. 4-70
4-27 觸媒濕式氧化程序處理2,4-DCP溶液之成本分析 …….. 4-74

第五章 結論與建議
5-1 結論 ………………………………………………………... 5-1
5-2 建議 ………………………………………………………… 5-6

參考文獻 …………………………………………………………….. 6-1
附錄 A 不同溫度之飽和水蒸氣壓力一覽表 ……………………… A-1
附錄 B API 20 NE生物快速鑑定系統結果記錄 ………………….. B-1
附錄 C Mn/Ce混成燒結觸媒之表面元素分析結果記錄 ………….. C-1
附錄 D 低分子量有機酸薄膜為透析/HPLC層析圖譜 …………… D-1
附錄 E 污染物及產物之定性及定量分析 ……………………… E-1
附錄 F 本研究實驗數據 ………………………………………… F-1
附錄 G 作者研究經歷與學術著作 ……………………………… G-1
附錄 H 作者簡歷 …………………………………………………… H-1
表 目 錄
表2-1 常見酚及氯酚化合物之物理及化學特性 ………….…….… 2-4
表2-2 常見酚及氯酚化合物毒性試驗之LC50平均值 …………… 2-6
表2-3 2,4-二氯酚對老鼠及哺乳動物毒性試驗之LD50值 …………… 2-6
表2-4 現行台灣與美國對水體含酚類污染物相關法規
管制標準一覽表 ……………………….…………………… 2-8
表2-5 高濃度含酚類廢液之回收法 ……………………………… 2-9
表2-6 生物毒性效應之百分率分級法 …………………………… 2-40
表2-7 生物毒性效應之對數分級法 ……………………………… 2-40
表3-1 活性污泥系統微量營養鹽溶液組成一覽表 ……………… 3-19
表3-2 活性污泥系統濃縮基質溶液組成一覽表 ………………… 3-20
表3-3 微透析系統有機酸標準溶液一覽表 ………………………… 3-26
表3-4 API 20NE試驗試劑槽顏色判別表 ……………………….. 3-49
表3-5 WAO或CWAO程序處理2,4-DCP溶液可能產生
之中間產物一覽表 ……………………………………………. 3-50
表3-6 溶液生物分解性之評定標準一覽表 ………………………. 3-59

表4-1 WAO程序處理Fe(CN)64‾溶液, vs. t 之
直線方程式一覽表 ………………………………………... 4-7
表4-2 圖4-8中觸媒濕式氧化程序之第一及第二階段反應動力
方程式 ……………………………………………………… 4-15
表4-3 圖4-8中觸媒濕式氧化程序不同反應階段之活化能
及頻率因數常數 …………………………………………… 4-15
表4-4 Mn/Ce混成燒結觸媒之表面特性分析性 ………………… 4-18
表4-5 Mn/Ce混成燒結觸媒之EDS成份分析表 ………………… 4-22
表4-6 WAO程序處理2,4-DCP溶液, vs. t 之
直線方程式一覽表 ………………………………………… 4-32
表4-7 混成燒結觸媒種類對CWAO程序處理2,4-DCP溶液
效能之影響一纜表 ………………………………………… 4-35
表4-8 圖4-24中觸媒濕式氧化程序之第一及第二階段
反應動力方程式 …………………………………………… 4-45
表4-9 圖4-24中觸媒濕式氧化程序不同反應階段之活化能
及頻率因數常數 …………………………………………… 4-46
表4-10 連續式濕式氧化反應去除2,4-DCP溶液COD值比率
與進流液空間流速之線性關係式 ……………….……… 4-47

表4-11 連續式濕式氧化反應去除2,4-DCP溶液TOC值比率
與進流液空間流速之線性關係式 ……………………..… 4-54
表4-12 連續式WAO程序及CWAO程序處理2,4-DCP溶液,
處理液之好氧菌比攝氧率生物毒性試驗EC50值 …..…. 4-66
表4-13 連續式觸媒濕式氧化程序處理2,4-DCP溶液
操作成本一覽表 …………………………………………. 4-76












圖 目 錄
圖2-1 濕式氧化法對有機物之反應路徑流程圖 ………………… 2-22
圖2-2 P. phosphoreum發光菌之代謝途徑 ………………………... 2-35
圖2-3 測試樣品之好氧細菌比攝氧率EC50測值 …………………. 2-38
圖3-1 觸媒濕式氧化程序處理鐵氰錯合物(Fe(CN)64-)水溶液
之研究步驟流程 ………………………………………………….… 3-3
圖3-2 異相觸媒濕式氧化程序處理2,4-二氯酚水溶液
之研究步驟流程 ……………………………………………………. 3-4
圖3-3 批次式濕式氧化反應器設備示意圖 ……………………….… 3-5
圖3-4 連續式濕式氧化反應器設備示意圖 ………………….…….. 3-7
圖3-5 製備Mn/Ce混成觸媒共沉澱裝置示意圖 ………………………… 3-9
圖3-6 製備Mn/Ce混成觸媒燒結裝置示意圖 …………………………… 3-10
圖3-7 連續式活性污泥馴養裝置示意圖 ……………………...…… 3-11
圖3-8 好氧菌攝氧率毒性試驗裝置 …………………...………….. 3-12
圖3-9 液體樣品微透析分析設備示意圖 …………………………. 3-14
圖3-10 連續式生物處理裝置示意圖 …………………...………… 3-15
圖3-11 Microtox®生物毒性分析儀面板示意圖 …………………. 3-39
圖4-1 溫度對Fe(CN)64‾熱分解效能之影響 ………………...…… 4-2
圖4-2 溫度對濕式氧化程序處理Fe(CN)64‾效能之影響 ………… 4-3
圖4-3 pH值對熱解及濕式氧化程序處理Fe(CN)64‾效能
之影響 ………………………………………………………. 4-4
圖4-4 氧氣分壓力對濕式氧化程序處理Fe(CN)64‾效能
之影響 ………………………………………………………. 4-7
圖4-5 Fe(CN)64‾初始濃度對濕式氧化程序處理Fe(CN)64‾
效能之影響 …………………………………………………. 4-9
圖4-6 觸媒對濕式氧化程序處理Fe(CN)64‾效能之影響 ………… 4-10
圖4-7 觸濕式氧化程序對Fe(CN)64‾溶液中COD值去除
效能之影響 …………………………………………………. 4-12
圖4-8 觸濕式氧化程序對Fe(CN)64‾溶液之反應動力變化
趨勢圖 ………………………………………………………. 4-14
圖4-9 Mn/Ce(8:2)混成燒結觸媒之EDS分析圖譜 …………….. 4-19
圖4-10 Mn/Ce(7:3)混成燒結觸媒之EDS分析圖譜 …………… 4-20
圖4-11 Mn/Ce(8:2)混成燒結觸媒之掃描式電子顯微鏡
分析圖譜 …………………………………………………… 4-23
圖4-12 Mn/Ce(7:3)混成燒結觸媒之掃描式電子顯微鏡
分析圖譜 …………………………………………………… 4-24
圖4-13 溫度對2,4-DCP熱分解效能之影響 ……………………... 4-26
圖4-14 溫度對濕式氧化程序處理2,4-DCP效能之影響 ………… 4-26
圖4-15 濕式氧化2,4-二氯酚(2,4-DCP)程序之處理液
pH值變化趨勢 …………………………………………... 4-29
圖4-16 初始pH值對濕式氧化程序處理2,4-二氯酚效能
之影響 ……………………………………………………. 4-29
圖4-17 氧氣分壓力對濕式氧化程序處理2,4-DCP效能
之影響 ……………………………………………………. 4-31
圖4-18 2,4-DCP初始濃度對濕式氧化程序處理2,4-DCP
效能之影響 ……………………………………………….. 4-33
圖4-19 Mn/C莫爾比率對連續式觸媒濕式氧化2,4-DCP
去除率之影響 …………………………………………….. 4-36
圖4-20 添加觸媒於連續式觸媒濕式氧化程序對2,4-DCP
去除率之影響 …………………………………………….. 4-38
圖4-21 2,4-DCP初始濃度對觸媒濕式氧化程序處理2,4-DCP
效能之影響 ……………………………………………….. 4-39
圖4-22 2,4-DCP初始濃度對觸媒濕式氧化程序處理2,4-DCP
效能之影響 ………………………………………………. 4-40
圖4-23 半批次式觸媒濕式氧化程序對2,4-DCP溶液中COD值
去除效能之影響 …………………………………………. 4-42

圖4-24 半批次式觸媒濕式氧化程序對2,4-DCP溶液之
反應動力變化趨勢 ………………………………………. 4-44
圖4-25 連續式觸媒濕式氧化程序對2,4-DCP溶液中COD值
去除效能之影響 …………………………………………. 4-47
圖4-26 連續式觸媒濕式氧化程序對2,4-DCP溶液中COD值
去除之反應動力變化趨勢圖 ……………………………. 4-49
圖4-27 連續式觸媒濕式氧化程序處理2,4-DCP溶液,
ln (Kobs) vs. 1/T趨勢圖 …………………………………… 4-49
圖4-28 連續式濕式氧化程序處理2,4-DCP溶液之Cl-離子
變化趨勢圖 ………………………………………………. 4-51
圖4-29 連續式觸媒濕式氧化程序處理2,4-DCP溶液之
Cl-離子變化趨勢圖 ……………………………………… 4-52
圖4-30 連續式觸媒濕式氧化程序對2,4-DCP溶液中TOC值
去除效能之影響 …………………………………………. 4-53
圖4-31 半批次式濕式氧化程序對2,4-DCP溶液中COD值
及TOC去除效能之影響 …………………………………. 4-55
圖4-32 半批次式濕式氧化程序處理2,4-DCP溶液,處理液之
BOD/COD比值隨反應時間之變化趨勢圖 ……………... 4-56

圖4-33 連續式Mn/Ce混成燒結觸媒濕式氧化程序處理
2,4-DCP溶液,處理液之BOD/COD比值隨
反應時間之變化趨勢圖 ………………………………….. 4-58
圖4-34 2,4-DCP溶液經連續式觸媒濕式氧化程序處理,
處理液接續活性污泥程序之BOD及COD值隨
反應停留時間變化趨勢圖 ………………………………. 4-60
圖4-35 API 20 NE快速生物鑑定系統 ………………………….. 4-62
圖4-36 2,4-DCP溶液經連續式濕式氧化程序處理,處理液
進行Microtox®毒性試驗之TU值變化趨勢圖 …………. 4-65
圖4-37 觸媒濕式氧化程序處理2,4-DCP溶液,5分鐘處理液
之HPLC層析圖譜 ………………………………………… 4-68
圖4-38 圖4-37中波峰A和B出流液之薄膜微透析/HPLC
層析圖譜 ………………………………………………….. 4-69
圖4-39 2,4-DCP在觸媒濕式氧化程序(使用Mn/Ce(7:3)
混成燒結觸媒)可能之分解路徑 …………………………. 4-71
圖4-40 連續式CWAO程序處理2,4-DCP溶液,其處理液中
2,4-DCP和COD值去除率隨反應時間的變化趨勢圖 …… 4-73
圖4-41 連續式CWAO程序處理2,4-DCP溶液,其處理液中
Mn2+濃度隨反應時間的變化圖 ………………………….. 4-75


參考文獻 References
一、中文文獻
王俊欽、李季眉 (1995),“固定化微生物對2,4-二氯酚及2,4,6-三氯酚之分解”,第二十屆廢水處理技術研討會論文集,淡水,台灣,頁1-9-1-15。
王鯤生、高志明、江康鈺 (1994),“高溫水解併同濕式氧化處理鐵氰錯合物之研究”, 第十九屆廢水處理技術研討會論文集,台南,台灣,頁139-147。
申永順、顧洋、李崑池 (1992),“以紫外線/過氧化氫程序處理含氯酚類水溶液反應行為之研究”,第十七屆廢水處理技術研討會論文集,中壢,台灣,頁553-573。
行政院環境保護署 (1997),www.epa.gov.tw/tech/Report/TXT/86-E3G1-09-17.txt。
行政院環境保護署 (1998),“放流水標準”,水污染防治法規,行政院環境保護署環境保護人員訓練所,頁45-79。
行政院環境保護署 (1997),www.epa.gov.tw/tech/Report/TXT/86-E3G1-09-17.txt。
吳美儀、張志堂、羅文煜、洪錫勳 (2000),“高濃度含酚廢水之光氧化特性研究”, 第二十五屆廢水處理技術研討會論文集,斗六,台灣,頁499-503。
沈俊男、曾迪華、廖萬里 (1995),“白腐真菌處理水中酚類污染物之基礎研究”,第二十屆廢水處理技術研討會論文集,淡水,台灣,頁1-1-1-7。
阮國棟 (1984),“廢水中各種酚類去除之理論與實業”,工業污染防治,第三卷,第三期,頁88-108。
林錕松,“2-氯酚之催化性超臨界濕式氧化之研究”,國立成功大學環境工程研究所博士論文,民國88年3月。
高志明,“高溫水解併同濕式氧化處理鐵氰錯化合物之研究”,國立中央大學環境工程研究所碩士論文,民國83年6月。
莊銘賢、盧至人、李季眉 (1992),“固定化技術研究多重混合碳源對氯酚生物分解之影響”,第十七屆廢水處理技術研討會論文集,中壢,台灣,頁311-323。
陳秋楊、黃建清 (1994),“微生物毒性試驗法在石化工業排放水毒性評估之比較研究”,第十九屆廢水處理技術研討會論文集,台南,台灣,頁62-68。
粱明在、洪錫勳 (2000),“超臨界水氧化技術在廢水處理與資源化應用研究”, 第二十五屆廢水處理技術研討會論文集,高雄,台灣,頁592-595。
黃秋嫆、李季眉、盧至人 (1993),“固定化氯酚分解菌處理廢水中含氯酚類有毒物質之研究”,第十八屆廢水處理技術研討會論文集,台中,頁539-548.
黃國書、王國華、謝永旭 (1992),“以二氧化鈦進行光催化分解水中單氯酚類之研究”,第十七屆廢水處理技術研討會論文集,中壢,台灣,頁807-818。
莊子賢,“濕式氧化及活性污泥法處理含多成分酚類化合物廢水之研究”,私立元智大學化學工程研究所碩士論文,民國82年6月。
張必杰,“以濕式氧化法處理印刷電路板顯像、去墨/剝膜廢液之研究”,國立中央大學環境工程研究所碩士論文,民國84年7月。
廖志祥、康世芳、吳福安 (1999),“氯離子與碳酸根對H2O2/UV氧化程序之共存效應研究”,第二十四屆廢水處理技術研討會論文集,新竹,台灣,頁443-448。
樓基中、李炳楠、顏伯宗 (2001),“以觸媒濕式氧化法處理人工配製2,4-二氯酚水溶液及處理液之Microtox®生物毒性初探”,21世紀可持續發展之環境保護研討會論文集,武漢,中國大陸,頁 210-215。
蔡振球 (1983),“濕式熱裂解技術處理高濃度含氰化物廢液介紹”,環保技術報導,第十四期,頁20-24。









二、英文文獻
Aldrich chemical Co., Inc. (1996), “Material Safety Data Sheet for 2,4-dichlorophenol.”
Armenante, Piero M. and C. J. Jou (1999), “Anaerobic-Aerobic Treatment of Halogenated Phenolic Compounds,” Water Res., Vol. 33, No. 3, pp. 681-692.
Baillod, C. R., R. A. Lamporter and B. A. Barna (1985), “Wet Oxidation for Industrial Waste Treatment,” Chem. Eng. Progress, Vol.3, pp. 52-55.
Beaubien, A. (1985), “A Flow Microcalorimetric Investigation of the Toxicity Effects Induced by Aliphatic Alcohols in a Heterogeneous Aerobic Culture,” Water Res., Vol. 19, pp. 747-755.
Beyrich, J., W. Gautshchi, W. Regenass, and W. Wiedmann (1979), “Design of Reactors for the Wet Air Oxidation of Industrial Wastewater by Means of Computer simulation,” Computers and Chem. Eng., Vol. 3, pp. 161-169.
Bulich, A. A. (1982), “A Practical and Reliable Method for Monitoring the Toxicity of Aquatic Samples,” Process Biochem., March/April, pp. 45-47.
Bulich, A. A. (1986), “Bioluminescence Assays,” Vol. 1 in Toxicity Testing Using Microorganisms, CRC Press, Boca Raton, FL, U.S.A., pp. 57-74.
Callahan, M. A., M. W. Slimak, N.W. Gabel, I. P. May, C. F. Fowler, J. R. Freed, P. Jennings, R. L. Durfee, F. C. Whitmore, B. Maestri, W. R. Mabey, B. R. Holt, and C. Gould (1979), Water-related Environmental Fate of 129 Priority Pollutants, USEPA, EPA-440-4-79-029b, Vol. II, pp.841-848.
Casseri, N. A., W. C. Ying and S. A. Sojka (1983), “Use of Rapid Bioassay for Assessment of Industrial Wastewater Treatment Efficiencies,” Proc. 38th Purdue Industrial Waste Conf., Woburn, MA, U.S.A., pp. 867-878.
Chakchouk, M., M. Hamdi, J. N. Foussard and H. Debellefontaine (1994), “Complete Treatment of Olive Oil Mill Wastewater by a Wet Air Oxidation Process Coupled with a Biological Step,” Environ. Tech., Vol. 15, pp. 323-332.
Chang, C. J., J. C. Lin and C. K. Chen (1994), “Effects of Temperature and Cu2+ Catalyst on Liquid-phase Oxidation of Industrial Wastewater,” J. Chem. Tech. Biotechnol., Vol. 57, pp. 355-361.
Chang, C. M. J., J. C. Lin, and C. K. Chen (1994), “Effects of Temperature and Cu2+ Catalyst on Liquid-Phase Oxidation of Industrial Wastewaters,” J. Chem. Tech. Biotechnol., Vol. 57, pp.355-361.
Coleman R. N. and A. A. Qureshi (1985), “Microtox and Spririlium Volutans Tests for Assessing Toxicity of Environmental Samples,” Bull. Environ. Contam. Toxicol., Vol. 35, pp. 443-451.
Davis, A. P. and C. P. Huang (1990), “The Removal of Substitued Phenols by Photocatalytic Oxidation Process with Cadmium Sulfide,” Water Res., Vol. 24, No. 5, pp. 543-550.
Duprez, D., F. Delanoe, J. Barbier, P. Isnard, and G. Blanchard (1996), “Catalytic Oxidation of Organic Compounds in Aqueous Media,” Catalysis Today, Vol. 29, No. 1—4 , pp. 317-322.
Fillmore (1990), Toxicity Reduction Evaluation at the City of Fayetteville Cross Creek Wastewater Treatment Plant, Office of Research and Development, USEPA, Cincinnati, OH, U.S.A.
Gallezot, P., S. Chaumet, A. Perrard, and P. Isnard (1997), “Catalytic Wet Air Oxidation of Acetic Acid on Carbon-Supported Ruthenium Catalysts,” J. of Catalysis, Vol. 168, pp.104-109.
Hager, D. G. (1974), “Industrial Wastewater Treatment by Granular Activate Carbon,” Ind. Water Eng., Jan-Feb., pp. 32-45.
Hamoudi, S., F. Larachi and A. Sayari (1998), “Wet Oxidation of Phenolic Solutions over Heterogeneous Catalysts: Degradation Profile and Catalyst Behavior,” J. Catalysis, Vol. 177, pp. 247-258.
Harmsen, J. M. A., L. Jelemensky, P. J. M. Van Andel-Scheffer, B. F. M. Kuseter, and G. B. Marin (1997), “Kinetic Modeling for Wet Air Oxidation of Formic Acid on a Carbon Supported Platinum Catalyst,” Applied Catalysis A: General, Vol. 165, pp. 499-509.
Himmelblau, D. M. (1960), “Solubility of Inert Gases in Water:0℃ to Near the Critical Point of Water,” J. Chem. Eng. Data, Vol. 10, pp. 10-25.
Ikeda, I. (1972), “Experimental Study on Treatment of Night Soil by Wet Air Oxidation Process,” Water Res., Vol. 6, No. 4, pp. 967-979.

Imamura, S. and A. Dol (1985), “Wet Oxidation of Ammonia Catalyzed by Cerium-Based Composite Oxides,” Ind. Eng. Chem. Prod. Res., Vol. 24, pp. 75-80.
Imamura, S., I. Fukuda and S. Ishida (1988), “Wet Oxidation Catalyzed by Ruthenium Supported on Cerium (IV) Oxides,” Ind. Eng. Chem. Res., Vol. 27, pp. 718-726.
Imamura, S., K. Belkacemi and F. Larachi (1999), “Catalytic Oxidation of Aqueous Phenolic Solutions Catalyst Deactivation and Kinetics,” Chem. Eng. Sci., Vol. 54, pp. 3569-3576.
John G. S. and R. L. Grawford (1985), “Microbiological Degradation of Chlorinated Phenol,” Trend in Biotechnol., Vol. 3, No. 12, pp. 300-305.
Kaiser, K. L.E. and V. S. Palabrica (1991), “Photobacterium phosphoreum Toxicity Data Index,” Water Poll. Res. J. Canada, Vol. 26, pp. 361-431.
Kalman, J., Z. izsaki, L. Kovacs, A. Grofcsik, and I. Szebenyi (1989), “Wet Air Oxidation of Toxic Industrial Effluents,” Water Sci. and Tech., Vol. 21, pp.289-295.
Keith, L. H. (1981), “EPA¢s Priority Pollutants: Where They Come from - Where They¢re Going”, American Inst. Chem. Eng., pp. 249-258.
Klinghoffer, A. A., R. L. Cerro, and M. A. Abraham (1998), “Catalytic Wet Oxidation of Acetic Using Platinum on Aluminum Monolith Catalyst,” Catalysis Today, Vol. 40, pp. 59-71.
Kong, I. C. and W. Jack Jones (1998), “Enhanced Dechlorination of 2,3-dichlorophenol in an Anaerobic Bioreactor by Addition of Auxiliary Carbon Sources,” Biotechnology Letters, No. 6, Vol. 20, pp. 561-564.

Lankford, P. W. and W. Wesley Eckenfelder (1990), Toxicity Reduction in Industrial Effluents, Van Nostrand Reinhold, New York, U.S.A.
Lee, B. N. and J. C. Lou (2000a), “Study on Wet Air Oxidation of Aqueous Ferrous Cyanide Solution Catalyzed by Three Metal Salts,” Wat. Sci. Tech., Vol. 42, No. 3-4, pp. 131-136.
Lee, B. N. and J. C. Lou (2000b), “Wet Oxidation of 2,4-Dichlorophenol Solution,” J. Chinese Institute Environ. Eng., Vol. 10, No. 3, pp. 169-175.
Li, L., P. Chen and E. F. Gloyna (1991), “Generalized Kinetics Model for Wet Air Oxidation,” AIChE J., Vol. 37, pp. 1687-1697.
Li, L., P. Chen, and E.F. Gloyna (1991), “Generalized Kinetics Model for Wet Air Oxidation,” AIChE J., Vol. 37, pp. 1687-1692.
Li, R., T. D. Thornton, and P. E. Savage (1992), “Kinetics of CO2 Formation from the Oxidation of Phenols in Supercritical Water,” Environ. Sci. Technol., Vol. 26, pp. 2388-2395.
Lin, S. H., S. J. Ho, and C. L. Wu (1996), “Kinetic and Performance Characteristics of Wet Oxidation of High-Concentration Wastewater,” Ind. Eng. Chem. Res., Vol. 35, pp.307-314.
Ling, S. H. and T. S. Chung (1994), “Wet Air Oxidation and Activated Sludge Treatment of Phenolic Wastewater,” J. Environ. Sci. Health, A29, pp. 547-564.
Logue, C. L., B. Kaopman, G. K. Brown, and G. Bitton (1989), “Toxicity Screening in a Large Municipal Wastewater System,” J. Wat. Pollutant Control Fed., Vol. 61, pp. 632-640.
Luck, F. (1999),“Wet Air Oxidation: Past, Present and Future,” Catalysis Today, Vol.53, pp.81-91.
Mantzavinos, M., R. Hellenbrand, A. G. Livingston, and I.S. Metcalfe (1997), “Reaction Mechanisms and Kinetics of Chemical Pretreatment of Bioresistant Organic Molecules by Wet Air Oxidation,” Wat. Sci. Tech., Vol. 35, No. 4, pp. 119-127.
Marshall, S., “ Priority Toxic Pollutants-Health Impacts and Allowable Limits,” Noyes Data Corporation, p. 167.
Memerow, N. L. (1978), Industrial Water Pollution, Addison-Wesely Publshing, MA, U.S.A., pp. 484-603.
Mercalf and Eddy, Inc. (1991), Wastewater Engineering Collection Treatment Disposal, 3rd Ed., McGraw-Hill, New York, U.S.A.
Milano, J. C., B. Escallon, and J. L. Vernet (1990), “Photolysis of 1,2-Dibromo-3-chloro Propane in Water,” Water Res., Vol. 24, No. 5, pp. 557-562.
Mishra, V. S., V. V. Mahajani and J. B. Joshi (1995), “Wet Air Oxidation,” Ind. Eng. Chem. Res., Vol. 34, pp. 2-48.
Mishra, V. S., V. V. Mahajani, and J. B. Joshi (1995), “ Wet Air Oxidation,” Ind. Eng. Chem. Res., Vol. 34, pp. 2-8.
Nogueura, R. F. P. and J. R. Guimarã (2000), “Photodegradation of Dichloroacetic Acid and 2,4-Dichlorophenol by Ferrioxalate/H2O2 System,” Wat. Res., Vol. 34, No. 3, pp. 895-901.
Ogata, Y., K. Tomizawa, and K. Takagi (1981), “Photo-oxidation of Formic, Acetic and Propionic Acids with Aqueous Hydrogen Peroxide,” Can. J. Chem., Vol. 59, pp. 14-25.
Okamoto, K., R. L. Yasunori, T. Hirok, T. Masashi, and I. Akira (1985), “Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder,” Bull. Chem. Soc., Jan., Vol. 58, pp. 2015-2022.
Oshima, Y., K. Timita, and S. Koda (1999), “Kinetics of the Catalytic Oxidation of Phenol over Manganese Oxide in Supercritical Water,” Ind. Eng. Chem. Res., Vol. 38, pp. 4183-4188.
Otal, E., D. Mantzavinos, M. V. Delgado, R. Hellenbrand, J. Lebrato, I. S. Metcalfe, and A. G. Livingston (1997), “Integrated Wet Air Oxidation and Biological Treatment of Polyethylene Glycol-Containing Wastewaters,” J. Chem. Technol. Biotechnol., Vol. 70, pp. 147-156.
Peltier, W. H. and C. I. Weber (1985), Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms, USEPA, EPA-600-4-85-013, Cincinnati, OH, U.S.A.
Peters, J. A. (1984), Evaluation of Hazardous Waste Incineration in Cement Kilns at San Juan Cement Company, USEPA, EPA-600/2-84-129, Cincinnati, OH, U.S.A.
Pintar, A. and J. Levec (1992), “Catalytic Oxidation of Organics in Aqueous Solutions (I): Kinetics of Phenol Oxidation,” J. of Catalysis, Vol. 135, pp. 345-357.
Portela Miguélez, J. R., J. López Bernal, E. Nebot Sanz, and E. Martínez de la Ossa (1997), “Kinetics of Wet Air Oxidation of Phenol,” Chem. Eng. J., Vol. 67, pp. 115-121.
Pray, H. A., C. E. Schweickert and B. H. Minnich (1952), “Solubility of Hydrogen, Oxygen, Nitrogen, and Helium in Water,” Ind. Eng. Chem., Vol. 44, pp. 1146-1151.

Qureshi, A. A., R. N. Coleman, and J. H. Paran (1984), “Evaluation and Refinement of the Microtox Test for Use I Toxicity Screening,” Vol. 1 in Toxicity Screening Procedures Using Bacterial System, MarcelDekker, New York, U.S.A., pp. 1-22.
Randall, T. L. and P. V. Knopp (1980), “Detoxification of Specific Organic Substances by Wet Oxidation,” J. Water Pollut. Control Fed., Vol. 52, pp. 2117-2129.
Randall, T. L., M. J. Dietrich, and P. J. Canny (1985), “Wet Air Oxidation of Hazardous Organics in Wastewater,” Environ. Progress, Vol. 4, pp. 171-183.
Rivas, F. J., S. T. Kolaczkowski, F. J. Beltrán and D. B. McLurgh (1998), “Development of a Model for the Wet Air Oxidation of Phenol Based on a Free Radical Mechanism,” Chem. Eng. Sci., Vol. 53, No. 14, pp. 2575-2586.
Robuck, S. J. and R. G. Luthy (1989), “Destruction of Iron-complexed Cyanide by Alkaline Hydrolysis,” Wat. Sci. and Tech., Vol. 21, No. 6—7, pp. 547-558.
Safarzadeh-Amiri A., J. R. Bolton and S. R. Cater (1997), “Ferrioxalate-mediated Photodegradation of Organic Pollutants in Contaminated Water,” Water Res., Vol. 31, No. 3., pp. 787-798.
Schwien U. and E. Schmidt (1984), “Improved Degradation of Mono-chlorophenols by a Constructed Strain,” Appl. Environ. Microbiol., Vol. 44, pp. 33-39.
Scott, J. P. and D. F.Ollis (1995), “Integration of Chemical and Biological Oxidation Processes for Water Treatment: Review and Recommendations,” Environ. Process, Vol. 14, pp. 88-103.
ST-Denis, C. E. and C. J. D. Fell (1971), “Diffusivity of Oxygen in Water,” Canada J. Chem. Eng., Vol. 49, pp. 885-894.
Tan, T. C. and W. K. Teo (1987), “Destruction of Cyanide by Thermal Hydrolysis,” Plating and Surface Finishing, Vol. 74, No. 4, pp.70-73.
Thomsen A. B. (1998a), “Wet Oxidation of Quinoline: Kinetic Aspects and Reaction Mechanisms,” Wat. Res., Vol. 32, No. 1, pp. 136-146.
Thomsen A. B. (1998b), “Wet Oxidation of Quinoline: Intermediates and By-product Toxicity,” Wat. Res., Vol. 32, No. 11, pp. 3353-3361.
Tokuz, R. Yucel (1989), “Biological Treatment of Chlorinated Phenols Using a Rotating Biological Contactor,” 43th Purdue Industrial Waste Conference Proceedings, Woburn, MA, U.S.A., pp. 283-299.
Toussaint, M. W., T. R. Shedd, W. H. Van Der Schalie and G. R. Leather (1995), “A Comparison of Standard Acute Toxicity Tests with Rapid-Screening Toxicity Tests,” Environ. Toxicol. Chem., Vol. 14, No. 5, pp. 907-915.
Tuano, V. (1993), “A Multiple-steps Kinetics Model for Phenol Oxidation in High Pressure Water,” Chem. Eng. Technol., Vol. 16, pp. 186-190.
Vasseur, P., J. F. Ferard, and C. Rast (1986), “Influence of Physic-chemical Parameters on the Microtox Test Response,” Toxicity Assessment, Vol. 1, pp. 283-300.
Vella, P. A., J. Munder, and B. Veromda (1992), “Chemical Oxidation: A Tool for Toxicity Reduction and Bio-enhancement,” Water Environment Federation 65th Annual Conference & Exposition, New Orleans, LA, U.S.A.
Voorhoeve, R. J. H., D. W. Johnson Jr., J. P. Remeika, and P. K. Gallagher (1977), “Perovskite Oxides: Materials Science in Catalysis, ” Science, Vol. 195, pp. 827-839.
Wilhelmi, A. R. and R. B. Ely (1997), “A Two-step Process for Toxic Wastewaters,” Chem. Eng., February, pp. 105-109.
Worden, R. M. and T. M. Donaldson (1987), “Dynamics of a Biological Fixed Film for Phenol Degradation in a Fluidized-Bed Bioreactor,” Biotechnol. Bioeng., Vol. 30, pp. 398-412.
Wurm, H. J. (1968), “The Treatment of Phenolic Wastes,” Proc. 23rd Purdue Ind. Waste Conference Proceedings, U.S.A., Vol. 23, pp. 1054-1073.
Yang, P. Y. and T. S. See (1991), “Packed- Entrapped-Mixed Microbial Cell Process for Removal of Phenol and Its Compounds,” 45th Purdue Industrial Waste Conference Proceedings, Woburn, MA, U.S.A., pp. 529-1010.
Zimpro Company (1999), http://zimpro.usfilter.com/products/industrial/wetair-ind.htm.


電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code