Responsive image
博碩士論文 etd-0718103-085942 詳細資訊
Title page for etd-0718103-085942
論文名稱
Title
利用鍺濃縮法製作高品質的SGOI (SiGe-On-Insulator) 基板
High quality SGOI (SiGe-On-Insulator) substrate preparation using Ge-Condensation technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-07-08
繳交日期
Date of Submission
2003-07-18
關鍵字
Keywords
鍺濃縮法、矽鍺
SGOI, Ge condensation
統計
Statistics
本論文已被瀏覽 5697 次,被下載 2649
The thesis/dissertation has been browsed 5697 times, has been downloaded 2649 times.
中文摘要
在本論文中,我們提出一個改良自鍺濃縮法來製作SGOI (SiGe-On-Insulator) wafer的技術。與傳統的鍺濃縮法技術相比,它具有下列三項優點:
(1) 較低的製程溫度。
(2) 不需利用化學機械研磨技術(CMP)就能得到高平坦度的矽鍺薄膜。
(3) 利用乾氧化製程來得到品質更佳的閘級介電層。
由於 SOI Wafer 的價格昂貴, 所以在本論文的實驗中, 先以傳統 Silicon Wafer 來暫代SOI Wafer,在獲得最終的成果之後,再將其應用在 SOI Wafer 上以減少不必要的浪費。
首先我們利用在Wafer上磊晶成長一層約700Å的 Si0.85Ge0.15 薄膜,接者以乾氧化製程在矽鍺薄膜的表面成長 SiO2 將鍺原子從矽鍺薄膜表面推擠到下方以提高薄膜中的鍺含量。而根據量測結果顯示最高可以將鍺濃度從 15% 提升到 35%。而在製作過程中,我們也配合 AFM / SEM / Raman spectroscopy 等材料分析儀器對薄膜的成分比例與粗糙度進行分析量測以建立完整的成長參數。
接著以此基版進行兩種不同結構Si / SiGe heterojunctio MOS電容的製作以驗證 Si cap layer 對於 SGOI基板的必要性。而從實驗結果來看,具有Si cap layer 的元件的確比不具有Si cap layer 的元件在電性上有著 10% ~ 20% 的改善。根據實驗的成果證明,我們能結合SOI wafer與Strain-Silicon的優點成功製造出高品質的SGOI (SiGe-On-Insulator)Wafer。

Abstract
In our thesis, we develop a modified fabrication method based on Ge condensation mechanism to fabricate SGOI (SiGe-on-insulator) Wafer. The advantages of this technique are as follows;
(1) Low fabrication temperature.
(2) Smooth SiGe/SiO2 interface without using CMP and good crystal quality.
(3) Better gate dielectric layer quality by dry oxidation.
In our experiment, we use silicon wafer rather than the SOI wafer to avoid cost because of the high price of the SOI wafer. First, a 700Å Si0.85Ge0.15 layer was grown on a thin SOI layer. The Ge atoms were rejected from the oxidized layer and pushed into the remaining SiGe layer by using dry oxidation at 925℃. Since it has been confirmed that the total amount of the Ge atom in the SGOI layer is conserved, the Ge fraction can be varied from 15% to 35%. During the fabrication procedure, we use semiconductor measurement instruments like AFM /SEM /Raman spectroscopy to verify the SiGe layer quality and built complete parameters database.
Then we make two different structure Si/SiGe heterojunction MOS capacitors on this wafer to verify the necessity of the Si cap layer to SGOI substrate. According to the experiment results, we can find the device with Si cap layer has better performences than the one without Si cap about 10% ~ 20% in electric characteristics.
Based on the experiment results, it is proved that a high quality SGOI wafer on the SOI wafer can be fabricated.

目次 Table of Contents
Content

Chapter 1 Introduction.....01

Chapter 2 Mechanism and conventional SGOI
substrate fabrications......03
2.1 Mechanism of carrier mobility improvement.....03
2.1.1Variation of the carrier effective mass......03
2.1.2 Differences of the carrier characteristics.....08
2.1.3 Existence of the Si cap layer.....08
2.2 The drawbacks of these tradictional fabrication methods......09
2.3 SGOI Substrate Fabricated by SIMOX Technology.....10
2.4 SGOI Substrate Fabricated by Wafer Bonding.....12
2.5 SGOI Substrate Fabricated by Smart-cut.....13
2.6 Summary.....13

Chapter 3 Experiment results of modified Ge condensation
method.....15
3.1 Ultra-High Vacuum Chemical Vapor Deposition
(UHV-CVD) For SiGe film epitaxy.....15
3.2 Raman scattering spectroscopy.....16
3.3 Ge condensation technique concept.....17
3.4 SGOI substrate fabrication process.....20
3.5 Experiment results
3.5.1 Oxidation rate on SiGe layer and Si layer.....21
3.5.2 Surface roughness changes with oxidation time.....24
3.5.3 Ge fraction changes with oxidation time.....37
3.6 Summary.....40

Chapter 4 Si / SiGe heterojunction MOS capacitor.....41
4.1 Fabrication procedure.....41
4.2 C-V Measurement.....43
4.3 C-V characteristics.....44
4.4 Summary.....46

Chapter 5 Conclusion.....47
參考文獻 References
Reference
[01] B. Yu et al “Ultra-thin-body SOI MOSFET’s terabit-scale integration”, in Proc. Inc. Semiconductor Device Research Symp., 1997.
[02] V.Subramanian et al., “A bulk-Si-compatible ultra-thin-body SOI technology for sub-100 nm MOSFETs”, in Proc. Device Research Conf., 1999, pp.28-29
[03] G.C Messenger and M. S Ash, “The Effects of Radiation Electronoc System”, Van Nostrand Reinhold Company, New york, P.307, 1986.
[04] T. Tezuka, N. Sugiyama, T. Mizuno and S. Takagi, “Novel fully-depleted SiGe on insulator pMOSFETs with high-mobility SiGe channels”, IEEE IEDM, p.33.6.1-33.6.3, 2001
[05] R. Oberhuber. et al, Phys. Rev., B58, 9941(1998)
[06] M. Bruel, Electron. Lett., 31 1201(1995)
[07] T. Vogelsang and K. R. Hofmann, “Electron transport in strained Si layers on Si Ge substrates”, Appl. Phys. Lett., vol. 63, pp. 186–188, 1993.
[08] T. Tezuka, N. Sugiyama, T. Mizuno and S. Takagi, “Novel fully-depleted SiGe -on- insulator pMOSFETs with high mobility SiGe surface channels”, Advance LSI Technology Laboratory, Corproate Research & Development Center, Toshiba Corporation.
[09] J. B. Roldán, F. Gámiz, J. A. López-Villanueva, and J. E. Carceller, “A Monte Carlo study of the electron-transport properties of high-performance strained-Si on relaxed Si Ge channel MOSFETs”, J. Appl. Phys., vol. 80, pp. 5121–5128, 1996.
[10] F. Gámiz, J. B. Roldán, J. A. López-Villanueva, and P. Cartujo, “Coulomb scatte- ring in strained-silicon inversion layers on Si Ge substrates”, Appl. Phys. Lett., vol. 69, pp. 797–799, 1996.
[11] 李世鴻,“半導體工程原理,” 全威圖書有限公司, 2002 年出版。
[12] S. Fukatsu, Y. Ishikawa, T. Saito, and N. Shibata, “SiGe-based semiconductor- on-insulator substrate created by low-energy separation-by-implanted-oxygen”, Appl. Phys. Lett., vol. 72, p. 3485, 1998.
[13] N. Sugiyama, T. Mizuno, S. Takagi, M. Koike, and A. Kurobe, “Formation of strained silicon layer on thin relaxed SiGe/SiO layer using SIMOX technology”, Thin Solid Films, vol. 369, p. 199, 2000.
[14] R. Oberhuber, G. Zandler, and P. Vogl, “Subband structure and mobility of two dimensional holes in strained Si/SiGe MOSFET’s”, Phys. Rev.B, vol. 58, pp. 9941–9947, 1998.
[15] T. Mizuno, N. Sugiyama, H. Satake, and S. Takagi, “Advanced SOI-MOSFET’s with strained-Si channel for high speed CMOS—Electron/hole mobility enhancement”, in Symp. VLSI Tech. Dig., 2000, pp.210–211.
[16] N. Sugiyama, T. Mizuno, M. Suzuki, and S. Takagi, “Design of SiGe/buried oxide layered structure to form highly strained Si layer on insulator for SOI MOSFET’s”, in Ext. Abstr. SSDM, pp. 474–475, 2000.
[17] Y. Ishikawa, N. Shibata, and S. Fukatsu, “SiGe-on-insulator substrate using SiGe alloy grown Si(001)”, Appl. Phys. Lett., vol. 75, pp. 983–985,1999.
[18] Zhi-Yuan Chang, M. T. Carrie, C.W.leitz, A. Pitera, M. L. Lee, “SiGe-on-insulator (SGOI): substrate preparation and MOSFET fabrication for electron mobility evaluation”, Massachusetts Institute of Technology, Microsystems Technology laboratories, Cambridge.
[19] R. W. Olesinski and G. J. Abbaschian, “The Ge–Si system”, Bull. Alloy Phase Diagrams, vol. 5, pp. 180–183, 1984.
[20] R. Oberhuber, G. Zandler, and P. Vogl, “Subband structure and mobility of two dimensional holes in strained Si/SiGe MOSFET’s”, Phys. Rev. B, vol. 58, pp. 9941–9947, 1998.
[21] T. Mizuno, N. Sugiyama, H. Satake, and S. Takagi, “Advanced SOI-MOSFET’s with strained-Si channel for high speed CMOS—Electron/hole mobility enhancement”, in Symp. VLSI Tech. Dig., 2000, pp.210–211.
[22] N. Sugiyama, T. Mizuno, M. Suzuki, and S. Takagi, “Design of SiGe/buried oxide layered structure to form highly strained Si layer on insulator for SOI MOSFET’s”, in Ext. Abstr. SSDM, pp. 474–475, 2000.
[23] Y. Ishikawa, N. Shibata, and S. Fukatsu, “SiGe-on-insulator substrate using SiGe alloy grown Si(001)”, Appl. Phys. Lett., vol. 75, pp. 983–985, 1999.
[24] R. W. Olesinski and G. J. Abbaschian, “The Ge–Si system”, Bull. Alloy Phase Diagrams, vol. 5, pp. 180–183, 1984.
[25] M. Yoshimi, M. Takahashi, T. Wada, K. Kato, S. Kambayashi, M. Kemmochi, and K. Natori, “Analysis of the drain breakdown mechanism in ultra-thin-film SOI MOSFET’s’’, IEEE Trans. Electron Devices, vol.37, pp. 2015-2020, Sept. 1990.
[26] K. Y. Choi, K. C. Park, C. M. Park, and M. K. Han, “A new bottom-gated poly-Si thin- film transistor”, IEEE Electron Device Lett, vol.20, no.4, p.170, 1999 A. Kumar, J. K. O. Sin, C. T. Nguyen, and P.K.Ko, “Kink-Free Polycrystalline Silicon Double-Gate Elevated-Channel Thin-Film Transistors,’’ IEEE Trans. Electron Devices, vol. 45, pp. 2514-2520, Dec. 1998.
[27] S. Zhang, C. Zhu, J. K. O. Sin, and P. K. T. Mok, “A Novel Ultrathin Elevated Channel Low-Temperature Poly-Si TFT”, IEEE Electron Device Lett., vol. 20, pp.569-571, Nov.1999.
[28] W-C Lee, Y-C King, T. J. King, and C. Hu, “Investigation of Poly-Si 1-x Ge x for Dual-Gate CMOS Technology”, IEEE Electron Device Lett., vol. 19, no. 7, pp. 247-249, 1998.
[29] H.C. Lin, T.G. Jung, H.Y. Lin, C.Y. Chang, T.F. Lei, P.J. Wang, R.C. Deng, J. Lin, and C.Y. Chao, “Deposition and device application of in situ boron-doped polycrystalline SiGe films grown at low temperatures”, J. Appl. Phys., vol. 74, pp. 5395-5401, 1993.
[30] H.C. Lin, C.Y. Chang, W.H. Chen, W.C. Tsai, T.C. Chang, T.G. Jung, and H.Y. Lin“, Effects of SiH4, GeH4, and B2H6 on the nucleation and deposition of polycrystalline Si1-xGex films,” J. Electronchem. Soc., vol. 141, pp. 2559-2563, 1994.
[31] A.T. Voultsas, and M.K. Hatalis, “Structure of as-deposited LPCVD silicon films at low deposition temperatures and pressures ”, J. Electronchem. Soc., vol.139, pp.2659-2665, 1992.
[32] D. Meakin, J. Stoemenus, P. Migliorato, and N.A. Economou, “Structural studies of low-temperature low-pressure chemical deposited polycrystalline silicon”, J. Appl. Phys. vol. 61, pp. 5031-5037, 1987.
[33] M. Miyasaka, T. Nakanaza, I. Yudasaka, and H. Ohshima, “TFT and physical properties of poly-crystalline silicon prepared by very low pressure chemical vapor deposition (VLPCVD)”, Jpn. J. Appl. Phys., vol. 33, pp. 3733-3740, 1991.
[34] 施敏, “半導體元件物理與製作技術,” 高立圖書有限公司, 2000 年三版。
[35] H.C. Lin, H.Y. Lin, C.Y. Chang, T.F. Lei, P.J. Wang, and C.Y. Chao, “Growth of undoped polycrystalline Si by an ultrahigh vacuum chemical vapor deposition system”, Appl. Phys. Lett., vol. 63, pp. 1351-1353, 1993.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code