Responsive image
博碩士論文 etd-0718103-092820 詳細資訊
Title page for etd-0718103-092820
論文名稱
Title
應用寬擺幅電流模式R-2R數位類比轉換器實現十位元1MHz取樣頻率之逐次趨近型式類比數位轉換器
A 10Bit 1Msample/sec Successive Approximation Analog-to-Digital Converter with Wide-Swing Current-Mode R-2R DAC
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-07-08
繳交日期
Date of Submission
2003-07-18
關鍵字
Keywords
類比數位轉換器
A/D converter
統計
Statistics
本論文已被瀏覽 5725 次,被下載 0
The thesis/dissertation has been browsed 5725 times, has been downloaded 0 times.
中文摘要
摘 要
本篇論文提出一個可操作在解析度十位元且取樣頻率為1MHz之逐次趨近型式類比數位轉換器(10bit 1MSample/sec Successive Approximation A/D converter)。首先,我們使用一個具有高輸入阻抗的比較器做為新的寬擺幅R-2R數位類比轉換器的負載。由於寬擺幅R-2R數位類比轉換器的負載極大使得原本使用在數位類比轉換器的運算放大器可被省略掉,因此可用擺幅及數位類比轉換器的速度皆得到提昇,且新的寬擺幅R-2R數位類比轉換器包含新的開關電路和匹配電阻可以使新的寬擺幅R-2R數位類比轉換器具有更精確的分壓,使得數位類比轉換器的準確度提昇。為了得到高準確度的取樣值以提供給比較器,我們提出一個對時脈不敏感的兩倍取樣保持電路。我們使用具有高增益、寬擺幅的運算放大器及含有dummy的類比開關和對時序不敏感的技術來降低誤差及提昇準確度。最後,我們將改良的電路用於類比數位轉換器中使得可用擺幅範圍、速度、準確度等都已被提昇。

本論文所設計之類比數位轉換器採用台灣積體電路製造公司(TSMC) 0.35μm 1P4M CMOS製程來實現,且供應電壓為3.3V。於取樣速度1MHz下,類比至數位轉換的操作電壓範圍為0.8至2.9V,微分非線性誤差約 0.5LSB,積分非線性誤差約 1LSB,而消耗功率為8mW。

Abstract
Abstract
A 10-bit 1MSample/sec successive approximation A/D converter is described in this thesis. First, by a comparator designed with high input impedance is used for the load of the modified wide-swing R-2R D/A converter. The modified wide-swing R-2R D/A converter possesses a high impedance load thus the op-amp is used in the D/A converter can be neglected. Therefore, the usable swing range and the convertible speed are improved and the power consumption is reduced. Secondary, the modified wide-swing R-2R D/A converter that contains modified switch-circuit and matched-component is used to obtain the good voltage division thereby improving the accuracy. Finally, the modified timing skew-insensitive double-sampling S/H circuit is used to sample a high precision signal to the comparator. This modified timing skew-insensitive double-sampling S/H circuit consists of high-gain high-swing op-amp, CMOS dummy switches, and timing skew-insensitive technique for upgrading the precision and swing range. By using these improved circuits the overall speed, accuracy and swing range are improved.

The proposed successive approximation A/D converter is designed by TSMC 1P4M 0.35μm CMOS process, and it operates at 3.3V power supply voltage with 0.8 to 2.9V reference voltage. The simulation results show that DNL is 0.5LSB, INL is 1LSB, and the power consumption is 8mW.

目次 Table of Contents
Contents
Chapter 1 Introduction……………………………1
Chapter 2 Sub-Circuits for Successive Approximation A/D Converter…………6
2.1 Analog MOS Switch………………………6
2.2 Non-overlap Clock Generator and pulse generator………8
2.3 Double-Sampling S/H circuit…………………………………10
2.4 Comparator Circuit…………………………12
2.5 Successive Approximation Register…14
2.6 Wide-Swing Current-Mode R-2R D/A Converter……21
Chapter 3 Modified Double-Sampling S/H Circuit and Modified Wide-Swing R-2R D/A converter………24
3.1 Analog CMOS Dummy Switch……………………24
3.2 The Operational Amplifier Design…………26
3.3 Modified Double-Sampling S/H circuit………30
3.4 Modified Wide-Swing R-2R D/A Converter…33
Chapter 4 Simulation Results………………………39
Chapter 5 Conclusion…………………………………44
Reference………………………………………………45
Appendix A……………………48
Appendix B…………………………………56
參考文獻 References
Reference

[1] G. Acciani, E. Chiarantoni, F. Vacca, “An alternative approach to parallel A/D conversion,” IEEE International Sympoisum on Circuits and Systems, vol. 11, No. 14, pp. 1525 –1528, June 1991.
[2] D. L. Miller, J. X. Przybysz, J. Kang, C. A. Hamilton, D. M. Burnell, “Josephson counting analog-to-digital converter,” IEEE Transactions on Magnetics, vol. 27, No. 2, pp. 2761 –2764, Mar 1991.
[3] G. Burra, K. S. Chao, “A high-speed high-resolution oversampled A/D converter,”
IEEE International Symposium on Circuits and Systems, vol. 2, No. 1, pp. 1282 –1285, May 1993.
[4] S. Mukherjee, C. Srinivasan, V. Pawar, S. Mathur, K. Godbole, “A 2.5 V 10 bit SAR ADC,” VLSI Design, vol. 1, No. 4, pp. 525 –526, Jan 1997.
[5] F. L. Keng, C. A. T. Salama, “Low-power current-mode algorithmic ADC,” IEEE International Symposium on Circuits and Systems, vol. 5, No. 1, pp. 473 –476, June 1994.
[6] Y. Yoshii, K. Asano, M. Nakamura, C. Yamada, “An 8 bit, 100 ms/s flash ADC,”
IEEE Journal of Solid-State Circuits, vol. 19, No. 6, pp. 842 –846, Dec 1984.
[7] B. Razavi, B. A. Wooley, “A 12-b 5-Msample/s two-step CMOS A/D converter,”
IEEE Journal of Solid-State Circuits, vol. 27, No. 12, pp. 1667 –1678, Dec. 1992.
[8] M. P. Flynn, B. Sheahan, “A 400-Msample/s, 6-b CMOS folding and interpolating ADC,” IEEE Journal of Solid-State Circuits, vol. 33, No. 2, pp. 1932 –1938, Dec. 1998.
[9] H. C. Choi, H. J. Park, S. K. Bae, J. W. Kim, P. Chung, “A 1.4 V 10-bit 20 MSPS pipelined A/D converter,” IEEE International Symposium on Circuits and Systems, vol. 1, No. 1, pp. 439 –442, May 2000.
[10] J. Yuan, C. Svensson, “A 10-bit 5-Msample/s successive approximation ADC cell used in a 70-Msample/s ADC array in 1.2-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 29, No. 8, pp. 866–872, Aug. 1994.
[11] C. S. Lin, B. D. Liu, “A new successive approximation architecture for low-power low-cost CMOS A/D converter,” IEEE Journal of Solid-State Circuits, vol. 38, No. 1, pp. 54 –62, Jan. 2003.
[12] S. Ogawa, K. Watanabe, “A switched-capacitor successive-approximation A/D converter,” IEEE Transaction on Instrumentation and Measurement, vol. 42, No. 4, pp. 847-853, Aug. 1993.
[13] G. Promitzer, “12-bit low-power fully differential switched capacitor noncalibrating successive approximation ADC with 1 MS/s,” IEEE Journal of Solid-State Circuits, vol. 36, No. 7, pp. 1138 –1143, Jul. 2001.
[14] C. Lin, W. C. Black, “A new charge redistribution D/A and A/D converter technique pseudo C-2C ladder,” IEEE Midwest Symposium on Circuits and Systems, vol. 2, No. 2, pp. 498 -501, Aug. 2000
[15] H. Neubauer, T. Desel, H. Hauer, “A successive approximation A/D converter with 16 bit 200 kS/s in 0.6 μm CMOS using self calibration and low power techniques,” IEEE International Conference on Electronics Circuits and Systems, vol. 2, No. 2, pp. 859 – 862, Feb. 2001.
[16] S. Mortezapour, E.K.F. Lee, “A 1-V, 8-bit successive approximation ADC in standard CMOS process,” IEEE Journal of Solid-State Circuits, vol. 35, No. 4, pp. 642 –646, Apr. 2000.
[17] C. J. B. Fayomi, G. W. Roberts, M. Sawan, “A 1-V, 10-bit rail-to-rail successive approximation analog-to-digital converter in standard 0.18um CMOS technology,” IEEE International Symposium on Circuits and Systems, vol. 1, No. 1, pp. 460 –463, Jan. 2001.
[18] K. Hadidi, V. S. Tso, G. C. Temes, “An 8-b 1.3-MHz successive-approximation A/D converter,” IEEE Journal of Solid-State Circuits, vol. 25, No. 3, pp. 880 –885, Jun 1990.
[19] J. Park, H. J. Park, Jae-Whui Kim, Sangnam Seo, P. Chung, “A 1 mW 10-bit 500KSPS SAR A/D converter,” International Symposium on Circuits and Systems, vol. 5, No. 5, pp. 581–584, May 2000.
[20] T. C. Choi, R. W. Brodersen, “Considerations of High-Frequency Switched- Capacitor Ladder Filters,” IEEE Transactions on Circuits and Systems, vol. 24, No. 2, pp. 545 – 552, Jun 1980.
[21] M. Waltari, K. Halonen, “A 10-bit 220-MSample/s CMOS sample-and-hold circuit,” IEEE International Symposium on Circuits and Systems, vol. 1, No. 1, pp.253 –256, May 1998.
[22] A. Baschirotto, “A low-voltage sample-and-hold circuit in standard CMOS technology operating at 40 ms/s,” IEEE Transactions on Circuits and Systems, vol. 48, No. 4, pp. 394 –399, April 2001.
[23] S. H. Lewis, H. S. Fetterman, G. F. Jr. Gross, R. Ramachandran, T. R. Viswanathan, “A 10-b 20-Msample/s analog-to-digital converter,” IEEE Journal of Solid-State Circuits, vol. 27, No. 3, pp. 351–358, Mar. 1992.
[24] C. C. Wang, Y. H. Hsueh, and S. K. Huang, “An embedded low transistor count 8-bit analog-to-digital converter using a binary searching method,' VLSI Design, vol. 14, no. 2, pp. 193-202, March 2002.
[25] C. M.Hammerschmied, Qiuting Huang, “Design and implementation of an untrimmed MOSFET-only 10-bit A/D converter with -79-dB THD,” IEEE Journal of Solid-State Circuits, vol. 33, No. 8, pp. 1148 –1157, Aug. 1998.
[26] J. Krupar, R. Srowik, J. Schreiter, A. Graupner, R. Schuffny, U. Jorges, “Minimizing charge injection errors in high-precision, high-speed SC-circuits,”
IEEE International Symposium on Circuits and Systems Circuits and Systems, vol. 5, No. 1, pp. 727 -730, May 2001.
[27] J. H. Shieh, P. Mahesh, B. J. Sheu, “Measurement and Analysis of Charge Injection in MOS Analog Switches”, IEEE Journal of Solid State Circuit, vol. 22, No. 2, pp. 277-281, April 1987.
[28] L. Dai, R. Harjani, “ CMOS switched-op-amp-based sample-and-hold circuit,” IEEE Journal of Solid-State Circuits, vol. 35, No. 1, pp. 109 –113, Jan 2000.
[29] S. Brigati, F. Maloberti, G. Torelli, “A CMOS sample and hold for high-speed ADC’s,” IEEE International Symposium on Circuits and Systems, vol. 1, No. 1, pp. 163 –166, May 1996.
[30] A. M. Abo, P. R. Gray “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE Journal of Solid-State Circuits, vol. 34, No. 5, pp. 599 –606, May 1999.
[31] G. Manganaro, “An improved phase clock generator for interleaved and double-sampled switched-capacitor circuits,” IEEE International Conference on Electronics, Circuits and Systems, vol. 3, No. 3, pp. 1553 -1556, Feb. 2001.
[32] M. Waltari, K. Halonen, “Timing skew insensitive switching for double sampled circuits,” IEEE International Symposium on Circuits and Systems, vol. 2, No. 2, pp. 61-64, Jul. 1999.
[33] G. Manganaro, “Feed forward approach for timing skew in interleaved and double-sampled circuits,” Electronics Letters, vol. 37, No. 9, pp. 552 –554, Apr. 2001.
[34] T. Kamoto, Y. Akazawa, M. Shinagawa, M.; “An 8-bit 2-ns monolithic DAC,” IEEE Journal of Solid-State Circuits, vol. 23, No. 1, pp. 142 –146, Feb. 1988.
[35] B. J. Tesch, J. C. Garcia, “A low glitch 14-b 100-MHz D/A converter,” IEEE Journal of Solid-State Circuits, vol. 32, No. 9, pp. 1465 –1469, Sept. 1997.



電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.223.172.252
論文開放下載的時間是 校外不公開

Your IP address is 18.223.172.252
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code