Responsive image
博碩士論文 etd-0718106-000701 詳細資訊
Title page for etd-0718106-000701
論文名稱
Title
裂片石蓴protease基因表現與高鹽誘導氧化逆境及蛋白質氧化之關係
The protease genes expression in Ulva fasciata (Ulvales, Chlorophyta) in relation to hypersalinity-induced oxidative stress and protein oxidation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-19
繳交日期
Date of Submission
2006-07-18
關鍵字
Keywords
氧化逆境、蛋白酶、高鹽逆境、裂片石蓴
Protease, Salinity stress, Oxidative stress, Ulva fasciata
統計
Statistics
本論文已被瀏覽 5698 次,被下載 17
The thesis/dissertation has been browsed 5698 times, has been downloaded 17 times.
中文摘要
本研究探討高鹽下裂片石蓴 (Ulva fasciata Delile) ubiquitin、20S proteasome beta subunit type 1 (20sβ1)、ubiquitin-conjugating enzyme e2 (ucee2)、ATP-dependent caseinolytic protease regulatory subunit (clpC) 基因表現與蛋白質氧化之關係。Ulva fasciata在高鹽 (90‰) 0-1小時,細胞含水量、TTC (2,3,5-tripheny tetrazolium chloride) 還原能力與caseinolytic protease activity保持不變,但高鹽後回復正常鹽度下生長能力受50%抑制且其光合作用速率 (PS II) 降低並產生大量H2O2含量,推測此時有氧化逆境產生而ubiquitin基因表現增高。在1-3小時間,細胞開始失水 (損失約正常細胞水分的33%),TTC還原能力、及光合作用速率 (PS II) 活性下降,H2O2含量增加更多而受氧化蛋白質 (其正常蛋白質含量約為起始點的20%),20sβ1、clpC基因表現及caseinolytic protease activity增加,clpC基因表現量在3小時達最大值。6-48小時期間,細胞失水嚴重 (損失約正常細胞水分的66%) 且6、12小時形成大量的游離氨基酸 (增加量約起始點的85%),而高鹽後回復正常鹽度下失去生長能力證實細胞已無法維持正常生理,ubiquitin、20sβ1及ucee2基因在此時的大量表現指出這些基因可能參與長期高鹽逆境造成之計畫性細胞死亡過程有關。以ROS (reactive oxygen species) 清除劑抑制高鹽ROS形成 (12 小時處理) 抑制蛋白質氧化 (carbonyl compounds) 傷害、caseinolytic proteolytic activity、及ubiquitin、20sβ1及ucee2、clpC基因表現之結果證實ROS與高鹽之protease 基因表現有關。多元胺也參與protease 基因表現之調節,但不同protease 基因不同種類多元胺的影響spermidine 及spermine 抑制ubiquitin、20sβ1及ucee2、及蛋白質氧化 (carbonyl groups) 傷害、caseinolytic protease activity,putrescine抑制clpC表現及蛋白質氧化 (carbonyl compounds) 傷害、caseinolytic protease activity卻反而增加ubiquitin、20sβ1及ucee2表現量增加。所以,裂片石蓴經由ROS及多元胺調節clpC基因表現而增加caseinolytic protease activity進行葉綠體因高鹽形成氧化蛋白質的分解。ubiquitin、20sβ1及ucee2基因可能參與長期高鹽逆境造成之計畫性細胞死亡過程有關,但須加以證明。
Abstract
This study has investigated the gene expression of ubiquitin、20S proteasome beta subunit type 1 (20sβ1)、ubiquitin-conjugating enzyme e2 (ucee2)、ATP-dependent caseinolytic protease regulatory subunit (clpC) in the marine macroalga Ulva fasciata Delile in relation to the hypersalinity-induced oxidative stress and protein oxidation. During the early stage (0-1 h), the water contents and TTC (2,3,5-tripheny tetrazolium chloride) reduction ability maintained unchanged but recovery ability and photosynthetic ability (PS II activity as indicated by Fv/Fm) were decreased along with accumulated H2O2, suggesting the occurrence of oxidative stress. Only ubiquitin expressed at this stage. During 1-3 h, water lost (approximately 33% of the control) with a further decrease in recovery ability, TTC reduction ability、PS II activity but more H2O2 accumulation and protein carbonyl compound. The transcripts of 20sβ1 and clpC and caseinolytic protease activity increased at this stage with the maximum of clpC at hour 3. In the 6-48 h, water lost seriously with high accumulated free amino acid at 6-12 h but low recovery ability. The transcript amounts of ubiquitin、20sβ1 and ucee2 increased marked during this stage, in which these might be related to programmed cell death caused by long-term exposure to hypersalinity. Reactive oxygen species (ROS) scavengers inhibited H2O2 accumulation, caseinolytic proteolytic activity increase, carbonyl compound formation and gene expression of ubiquitin、20sβ1、ucee2、clpC, indicating a role of ROS in the regulation of protease genes. A role of polyamines in the regulation of protease gene expression was tested. Spermidine and spermine inhibited the gene expression of ubiquitin、20sβ1 and ucee2, the oxidation of proteins (carbonyl groups) and the induction of caseinolytic protease activity in 90‰-treated thalli, whereas putrescine inhibited clpC expression, the oxidation of proteins and caseinolytic protease activity but enhanced the gene expression of ubiquitin、20sβ1 and ucee2. In conclusion, the results of the present investigation show that the degradation of oxidatively damaged proteins under hypersalinity conditions by increased caseinolytic protease activity is driven by the up-regulation of clpC gene expression via ROS and polyamines. It seems likely that the induction of ubiquitin、20sβ1 and ucee2 gene expression might be associated with the hypersalinity-mediated programmed cell death.
目次 Table of Contents
謝辭-------------------------------------------------- i
中文摘要---------------------------------------------- ii
英文摘要---------------------------------------------- iv
目錄-------------------------------------------------- vi
圖目錄------------------------------------------------ vii
表目錄------------------------------------------------ x
一、前言---------------------------------------------- 1
二、材料與方法---------------------------------------- 6
三、結果---------------------------------------------- 21
四、討論---------------------------------------------- 67
參考文獻---------------------------------------------- 73
附錄-------------------------------------------------- 81
參考文獻 References
陳敏華,1998。裂片石蓴 (Ulva fasciata Delile) (Ulvales, Chlorophyta) 多元胺 (polyamines) 低鹽逆境之關係。國立中山大學海洋生物研究所碩士論文。台灣,中華民國。
柳嘉雄,1999。Ca2+/calmodulin與NaCl誘導裂片石蓴 (Ulva fasciata Delile) (Ulvales, Chlorophyta) 脯氨酸累積之關係。國立中山大學海洋生物研究所碩士論文。台灣,中華民國。
Adam Z. (2000) Chloroplast protease: Possible regulators of gene expression? Biochimie 82:647-654.
Alamgir A. N. M., Ali M. Y. (1999) Effect of salinity on leaf pigments, sugar and protein concentrations and chloroplast ATPAase activity of rice (Oryza sativa L.). Bangladesh J. Bot. 28:145-149.
Allakhverdiev S. I., Nishiyama Y., Miyairi S., Yamamoto H., Inagaki N., Kanesaki Y., Murata N. (2002) Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiol. 130:1443-1453.
Bandeoglu E., Eyidogan F., Yucel M., Oktem H. A. (2004) Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regul. 42: 69-77.
Barros M. P., Granbom M., Colepicolo P., Pedersen M. (2003) Terporal mismatch between induction of superoxide dismutase and ascorbate peroxidase correlates with high H2O2 concentration in seawater from clofibrate-treated red algae Kappaphycus alvarezii. Arch. Biochem. Biophys. 420:161-168.
Beal M. F. (2002) Oxidatively modified proteins in aging and disease. Free Radic. Biol. Med. 32:797-803.
Beers E. P., Woffenden B. J., Zhao C. S. (2000) Plant proteolytic enzymes: possible roles during programmed cell death. Plant Mol. Biol. 44:399-415.
Berlett B. S., Stadtman E. R. (1997) Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272:20313-20316.
BD Biosciences – Clontech. (2004) BD PCR-Select™ cDNA Subtraction Kit User Manual. pp. 1-47.
Bouchereau A., Aziz A., Larher F., Martin-Tanguy J. (1999) Polyamines and environmental challenges: recent development. Plant Sci. 140:103-125.
Bradford, E. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
Chevion M., Berenshtein E., Stadtman E. R. (2000) Human studies related to protein oxidation: protein carbonyl content as a marker of damage. Free Rad. Res. 33:S99-108.
Cohen S. (1998) A Guide to the Polyamines. Oxford University Press, Oxford, pp1-595.
Dalle-Donne I., Rossi R., Giustarini D., Milzani A., Colombo R. (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clinica Chimica Aata. 329:23-38.
Davies K. J. A. (2001) Degradation of oxidized proteins by the 20S proteasome. Biochim. 83:301-310.
Einav R., Breckle S. and Beer S. (1995) Ecophysiological adaptation strategies of some intertidal marine macroalgae of the Israeli Mediterranean coast. Mar. Ecol. Prog. Ser. 125: 219-228.
Fitzgerald M. P., Husain A., Rogers L. J. (1978) A constitutive flavodoxin from a eukaryotic alga. Biochem. Biophys. Res. Commun. 81: 630-635.
Fong P., Boyer K. E., Desmond J. S., Zedler J. B. (1996) Salinity stress, nitrogen competition, and facilitation: what controls seasonal succession of two opportunistic green macroalgae? J. Exp. Mar. Biol. Ecol. 206:203-221.
Gadallah M. A. A. (1999) Effects of proline and glycinebetaine on Vicia faba response to salt stress. Biol. Plant. 42:249-257.
Galston A. W., Sawhney R. K. (1990) Polyamines in plant physiology. Plant Physiol. 94:406-410.
Galston A. W., Kaur-Sawhney R. (1990) Polyamines in plant physiology. Plant Physiol. 94:406-410.
Grune T., Merker K., Sandig G., Davies K. J. A. (2003) Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem. Biophys. Res. Commun. 305: 709-718.
Halliwell B., Gutteridge J. M. C. (1989) Free Radicals in Biology and Medicine. Clarendon. Oxford University Press.
Heinz W. G. (1998) Underwater fluorometer diving-pam handbook operation. pp.1-116. Walz. Germany.
Hellebust J. A. (1976) Osmoregulation. Annu. Rev. Plant Plysiol. 27: 485-505.
Henley W. J., Lindley S. T., Levavasseur G., Osmond C. B., Ramus J. (1992) Photosynthetic response of Ulva rotundata to light and temperature during emersion on an intertidal sand flat. Oecologia 89: 516-523.
Hernandez J. A., Olmas E., Corpas F. J., Sevilla F., del Rio L. A. (1995) Salt-induced oxidative stress in chloroplasts of pea plant. Plant Sci. 105:151-167.
Hertwig B., Streb P., Feierabend J. (1992) Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions. Plant Physiol. 100:1547-1553.
Hicke L., Dunn R. (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin binding proteins. Ann. Rev. Cell Dev. Biol. 19:141-172.
Hurtado-Ponce A. Q., Umezaki I. (1987) Groeth rate studies of Gracilaria verrucosa (Gigartinales, Rhodophyta). Bot. Mar. 30:223-226.
Igarashi K., Kashiwagi K. (2000) Polyamines: mysterious modulators of cellular functions. Biochem. Biophys. Res. Commun. 271:559-564.
Jahngen-Hodge J., Obin M. S., Gong X., Shang F., Nowell T. R. Jr., Gong J., Abasi H., Blumberg J., Taylor A. (1997) Regulation of ubiquitin-conjugating enzymes by glutathione following oxidative stress. J. Biol. Chem. 272:28218-28226.
Jahnke L. S., White A. L. (2003) Long-term hyposaline and hypersaline stresses produce distinct antioxidant responses in the marine alga Dunaliella tertiolecta. J Plant Physiol. 160:1193-1202.
Kakkar R. K., Rai V. K (1993) Plant polyamines in flowering and fruit ripening. Phytochemistry 33:1281-1288.
Kakkar R. K., Nagar P. K., Ahuja P.S., Rai V.K. (2000) Polyamines and plant morphogenesis. Biol. Plant. 43:1-11.
Kaminska B., Kaczmarek L., Grzelakowska-Sztabert B. (1992) Inhibitors of polyamine biosynthesis affect the expression of genes encoding cytoskeletal proteins. FEBS Lett 304:198-200.
Kaur-Sawhney R., Shih L. M., Galston A. W. (1982a) Relation of polymine biosynthesis to the initiation of sprouting in potato tubers. Plant Physiol. 69:411-415.
Kaur-Sawhney R., Shih L. M., Cegielska T., Galston A. W. (1982b) Inhition of protease activity by polyamines. Relevance for control of leaf senescence. FBBS Lett. 145:345-349.
Keutgen N., Chen K., Lenz F. (1997) Responses of strawberry leaf photosynthesis, chlorophyll fluorescence and macronutrient contents to elevated CO2. J. Plant Physiol. 150:395-400.
Kirst, G. O. (1990) Salinity tolerance of eukaryotic marine algae. Annu. Rev. Plant Plysiol. Plant Mol. Biol. 40: 21-53.
Kyle D. J., Ohad I., Arntzen C. J. (1984) Membrane protein damage and repair: selective loss of a quinone-protein function in chloroplast membranes. Proc. Natl. Acad. Sci. USA. 81:4070-4074.
Lee S. S., Cho H. S., Yoon G. M., Ahn J. W., Kim H. H., Pai H. S. (2003) Interaction of NtCDPK1 calcium-dependent protein kinase with NtRpn3 regulatory subunit of the 26S proteasome in Nicotiana tabacum. Plant J. 33:825-840.
Lee T. M. and Chen M. H. (1998) Hyposaline effect on polyamine accumulation in Ulva fasciata (Ulvales, Chlorophyta). Bot. Bull. Acad. Sin. 39:167-174.
Lobban C. S., Harrison P.J. (1997) Seaweed Ecology and Physiology. pp.236-255. Cambridge Univ. Press, New York.
Lorenzini G., Guidi L., Nali C., Franco G. (1999) Quenching analysis in polar clones to ozone. Tree Physiol. 19:607-12.
Lu C. M., Zhang J. H. (1999) Effects of salt stress on PSII function and photoinhibition in the cyanobacterium Spirulina platensis. J Plant Physiol. 155:740-745.
Lu I. F., Sung M. S., Lee T. M. (2006) Salinity stress and hydrogen peroxide regulation of antioxidant defense system in Ulva fasciata. Mar. Biol. Unpublish
Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405-410.
Muthukumarasamy M., Gupta S.D., Pannerselvam R. (2000) Enhancement of peroxidase, polyphenol oxidase and superoxide dismutage activities by triadimefon in NaCl stressed Raphanus sativus L. Biol. Plant. 43:317-320.
Neale P. J., Melis A. (1989) Salinity-stress enhances photoinhibition of photosystem II in Chlamydomonas reinhardtii. J. Plant Physiol. 134:619-622.
Netondo G. W., Onyango J. C., Beck E. (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci. 44:806-811.
Ning S. B., Guo H. L., Wang L., Song Y. C. (2002) Salt stress induces programmed cell death in prokaryotic organism Anabaena. J. Appl. Bacteriol. 93:15-28.
Obin M. S., Shang F., Gong X., Handelman G., Blumberg J., Taylor A. (1998) Redox regulation of ubiquitin-conjugating enzymes: mechanistic insights using the thiol-specific oxidant diamide. FASEB J. 12:561-569.
Okuda, T., Matsuda, Y., Yamanaka, A., Sagisaka, S. (1991) Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol. 97:1265-1267.
Packer A., Glazer A. N. (1990) Oxygen Radicals in Biological Systems Parts B Oxygen Radicals and Antioxidants. Methods in Enzymology 186:464-477.
Palma, J. M., Sandalio, L. M., Corpas, F. J., Romero-Puertas, M. C., McCarthy, I., del Rio, L. A. (2002) Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol. Biochem. 40:521-530.
Parida A., Das A. B., Das P. (2002) NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. J. Plant Biol. 45:28-36.
Parida A. K., Das A. B. (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Saf. 60:324-349.
Parsell D. A., Lindquist S. (1993) The function of heat shock proteins in stress tolerance: degradation and reactivation of damaged protein. Annu. Rev. Genet. 27:437-496.
Perez-Llorens J. L., Benitez E., Vergara J. J., Berges J. A. (2003) Characterization of proteolytic enzyme activities in macroalgae. Eur. J. Phycol. 38:55-64.
Porankiewicz J., Schelin J., Clarke A. K. (1998) The ATP-dependent Clp protease is essential for acclimation to UV-B and low temperature in the cyanobacterium Synechococcus. Mol. Microbiol. 29:275-283.
Provasoli L. (1963) Growing marine seaweeds. Proc. 4th Intl. Seaweed Symp. Eds. pp.9-17. Pergamon Press, New York.
Qureshi M. I., Israr M., Abdin M. Z., Iqbal M. (2005) Responses of Artemisia annua L. to lead and salt-induced oxidative stress. Environ. Exp. Bot. 53:185-193.
Rodriguez K. M., Alpuche S. A., Ruiz O., Jimenez B. J. (2006) Effect of salt stress on the regulation of maize (Zea mays L.) genes involved in polyamine biosynthesis. Plant Growth Regul. 48:175-185.
Sairam R. K., Tyagi A. (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci. 86:407-421.
Shacter E. (2000) Quantification and significance of protein oxidation in biological samples. Drug Metab. Ev. 32:307-326.
Shang F., Taylor A. (1995) Oxidative stress and recovery from oxidative stress are associated with altered ubiquitin conjugating and proteolytic activities in bovine lens epithelial cells. Biochem. J. 307:297-303.
Sharma P. K., Hall D. O. (1991) Interaction of salt stress and photoinhibition on photosynthesis in barley and sorghum. J. Plant. Physiol. 138:614-619.
Shih L., Kaur-Sawhney R., Fuher J., Samanta S., Galston W. (1982) Effects of exogenous 1,3-diaminopropane and spermidine on senescence of oat leaves. Inhibition of protease activity, ethylene production, and chlorothyll loss as related to polyamine content. Plant Physiol. 70:1592-1596.
Stepien P., Klobus G. (2005) Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiol. Plant. 125:31-40.
Tabor C. W., Tabor H. (1984) Polyamines. Annu. Rew. Biochem. 53:749-790.
Thiel, T. (1990) Protein turn-over and heterocyst differentiation in the cyanobacterium Anabaena variabilis. J. Phycol. 26:50-54.
Thomas J. C., McElwain E. F., Bohnert H. J. (1992) Convergent induction of osmotic stress-responses. Plant Physiol. 100:416-423.
Vierstra R. D. (1993) Protein-dengadation in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:385-410.
Vierstra R. D. (1996) Proteolysis in plants: mechanisms and functions. Plant Mol. Biol. 32:275-302.
Vranova E., Inze D., Breusegem F. V. (2002) Signal transduction during oxidative stress. J. EXP. BOT. 53:1227-1236.
Wang Y., Nil N. (2000) Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. J. Hortic. Sci. Biotechnol. 75:623-627.
Zhang Q. D., Lu C. M., Liu L. N., Bai K. Z., Kuang T. Y. (1996a) The effect of elevated CO2 on the functions of PS II in soybean leaves. Acta. Phytol. Sin. 20:517-23.
Zhang Q.D., Lu C. M., Feng L. J., Ling S. Q., Kuang T. Y., Bai K. Z. (1996b) Effect of elevated CO2 on the primary conversion of light energy of alfalfa photosynthesis. Acta. Bot. Sin. 38:77-82.
Zheng B., Halperin T., Hruskova-Heidingsfeldova O., Adam Z., Clarke A. K. (2002) Characterization of chloroplast Clp proteins in Arabidopsis: Localization, tissue specificity and stress responses. Physiol. Plant. 114:92-101.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.133.159.224
論文開放下載的時間是 校外不公開

Your IP address is 3.133.159.224
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code