Responsive image
博碩士論文 etd-0718106-105518 詳細資訊
Title page for etd-0718106-105518
論文名稱
Title
封裝級錫球在高速衝擊下的結構反應
Structural response of package-level solder balls due to high-speed impact test
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-22
繳交日期
Date of Submission
2006-07-18
關鍵字
Keywords
錫球、錫球強度、迴焊、衝擊
solder ball, impact, reflow, solder strength
統計
Statistics
本論文已被瀏覽 5661 次,被下載 3130
The thesis/dissertation has been browsed 5661 times, has been downloaded 3130 times.
中文摘要
本文主要在研究,封裝級錫球在承受高速衝擊時的結構反應,實驗中使用Sn/4.0Ag/0.5Cu、Sn/3.5Ag/0.75Cu、Sn/1.0Ag/1.0Cu、Sn/3.0Ag/0.5Cu、Sn/2.6Ag/0.6Cu五種不同錫球成分,撘配兩種不同焊墊表面處理方式,並利用高速衝擊機台做四種參數實驗,包含不同衝擊速度、不同落錘質量、不同迴焊次數以及迴焊後在室溫下放置不同天數的實驗。實驗後探討錫球強度和機械性質的變化,並觀察其破壞模式,同時使用電子顯微鏡和X射線能量散佈光譜儀觀察錫球迴焊前後結構的變化。
實驗結果顯示,當衝擊速度超過某一臨界值時,錫球承受的最大衝擊力會隨著衝擊速度的增加而減少,Sn/2.6Ag/0.6Cu(Ni/Au)承受的最大衝擊力在各個測試速度下都是最大的。錫球的最大衝擊力會因為落錘質量增加而減少。錫球在迴焊後強度會明顯的減弱,但迴焊前兩次強度沒有顯著變化。迴焊後在室溫下放置七天內發現錫球的最大衝擊力與衝擊能的變動並不大,但是延性和勁度則有不穩的現象。
Abstract
In this thesis, the response of solder balls under high-speed impact was investigated. Five solder compositions, such as Sn/4.0Ag/0.5Cu,Sn/3.5Ag/0.75Cu,Sn/1.0Ag/1.0Cu, Sn/3.0Ag/0.5Cu and Sn/2.6Ag/0.6Cu with two pad surface finishes and ball impact test system were used to implement four kinds of experiments including different impact speeds, different hammers, different reflow times and different aging time in room temperature after reflow. From experiments, the variations of solder strength and mechanical properties were received and discussed. At the same time, failure modes and variations of solder structure after reflow were observed by using SEM and X-ray EDS.
The experimental results show that maximum impact force on solder joints increases with the increasing of impact speed when it reaches a critical value. The impact force of Sn/2.6Ag/0.6Cu with Ni/Au pad finish is the maximum among all the solder compositions at varied impact speeds. Maximum impact force on solder joints will decrease with the increasing of mass of hammer. The strength of solder ball were reduced significantly after reflow, however, it makes no difference for solder strength to reflow twice. It was found that maximum impact force and impact energy of solder joints didn’t change a lot, but the ductility and stiffness of them varied unstably under the condition of room temperature for seven days after reflow.
目次 Table of Contents
誌謝............................................................................................................I
目錄..........................................................................................................II
表目錄......................................................................................................IV
圖目錄....................................................................................................VII
摘要......................................................................................................XIII
ABSTRACT…………………………………………………………...XIV
第一章 緒論.............................................................................................1
1-1 前言................................................................................................1
1-2 文獻回顧........................................................................................2
1-3 組織與章節………………………………………………………5
第二章 BGA封裝技術…………………………………………………7
2-1 IC封裝技術簡介………………………………………………....7
2-2 球柵陣列封裝介紹……………………………………………...10
2-2-1 BGA定義................................................................................10
2-2-2 BGA的分類…………………………………………………10
2-2-3 BGA的優異性………………………………………………12
第三章 實驗工作………………………………………………………19
3-1 實驗規劃………………………………………………………...19
3-2 試片介紹………………………………………………………...20
3-3 機台介紹與實驗流程…………………………………………...20
3-3-1 機台介紹…………………………………………………...20
3-3-2 實驗流程…………………………………………………...21
3-4 後續分析工作…………………………………………………...22
3-4-1 實驗參數的計算…………………………………………...22
3-4-2 實驗後試片的觀察…………………………………...........24
第四章 實驗結果....................................................................................36
4-1 不同衝擊速度...............................................................................36
4-2 不同落錘質量…………………………………………………...37
4-3 不同迴焊次數...............................................................................38
4-4 迴焊後不同放置天數…………………………………………...39
第五章 討論
5-1 不同衝擊速度...............................................................................74
5-2 不同落錘質量…………………………………………………...76
5-3 不同迴焊次數...............................................................................77
5-4 迴焊後不同放置天數…………………………………………...78
第六章 結論…………………………………………………………....85
參考文獻………………………………………………………………..88
表目錄
表3-1 第一組實驗測試狀況…………………………………………26
表3-2 第二組實驗測試狀況…………………………………………26
表3-3 第三組實驗測試狀況…………………………………………27
表3-4 第四組實驗測試狀況…………………………………………27
表4-1 不同衝擊速度下Sn/4.0Ag/0.5Cu(OSP)實驗數據的平均值 與標準差……………………………………………………..41
表4-2 不同衝擊速度下Sn/3.5Ag/0.75Cu(OSP)實驗數據的平均值 與標準差……………………………………………………...41
表4-3 不同衝擊速度下Sn/1.0Ag/1.0Cu(OSP)實驗數據的平均值 與標準差……………………………………………………...42
表4-4 不同衝擊速度下Sn/3.0Ag/0.5Cu(Ni/Au)實驗數據的平均值 與標準差……………………………………………………...42
表4-5 不同衝擊速度下Sn/2.6Ag/0.6Cu(Ni/Au)實驗數據的平均值 與標準差……………………………………………………...43
表4-6 不同落錘質量下Sn/4.0Ag/0.5Cu(Ni/Au)實驗數據的平均值 與標準差……………………………………………………...43
表4-7 不同落錘質量下Sn/3.5Ag/0.75Cu(Ni/Au)實驗數據的平均值與標準差…………………………………………………...44
表4-8 不同落錘質量下Sn/1.0Ag/1.0Cu(Ni/Au)實驗數據的平均值與標準差………………………………………………….......44
表4-9 不同落錘質量下Sn/3.0Ag/0.5Cu(OSP)實驗數據的平均值與標準差………………………………………………….......45
表4-10 不同落錘質量下Sn/2.6Ag/0.6Cu(OSP)實驗數據的平均值 與標準差………………………………………………….......45
表4-11 不同迴焊次數實驗中Sn/3.5Ag/0.75Cu(Ni/Au)實驗數據的平均值與標準差………………………………………….......46
表4-12 不同迴焊次數實驗中Sn/3.0Ag/0.5Cu(OSP)實驗數據的平均值與標準差…………………………………………….......46
表4-13 迴焊後放置不同天數下Sn/4.0Ag/0.5Cu(OSP)實驗數據的平均值與標準差………………………………………….......47
表4-14 迴焊後放置不同天數下Sn/3.5Ag/0.75Cu(OSP)實驗數據的平均值與標準差……………………………………….......47
表4-15 迴焊後放置不同天數下Sn/1.0Ag/1.0Cu(OSP)實驗數據的平均值與標準差………………………………………….......48
表4-16 迴焊後放置不同天數下Sn/2.6Ag/0.6Cu(Ni/Au)實驗數據的平均值與標準差……………………………………….......48
表4-17 迴焊後放置不同天數下Sn/3.0Ag/0.5Cu(Ni/Au)實驗數據的平均值與標準差……………………………………….......49
表5-1 Sn/4.0Ag/0.5Cu(Ni/Au)破壞模式B與C的比較………...80


































圖目錄
圖2-1 封裝的目的……………………………………………………14
圖2-2 封裝層次的區分………………………………………………15
圖2-3 球柵陣列封裝體……………………………………………....15
圖2-4 BGA封裝體內部線路………………………………………...16
圖2-5 PBGA內部結構圖…………………………………………….16
圖2-6 CBGA內部結構圖…………………………………………….17
圖2-7 TBGA內部結構圖…………………………………………….17
圖2-8 MBGA內部結構圖……………………………………………18
圖3-1 試片俯視圖……………………………………………………28
圖3-2 落錘衝擊機台…………………………………………………28
圖3-3 示波器........................................................................................29
圖3-4 光學顯微鏡……………………………………………………29
圖3-5 研磨拋光機……………………………………………………30
圖3-6 超音波震盪機…………………………………………………30
圖3-7 掃描式電子顯微鏡……………………………………………31
圖3-8 高倍顯微鏡……………………………………………………31
圖3-9 紅外線迴焊爐…………………………………………………32
圖3-10 迴焊曲線………………………………………………………32
圖3-11 撞針與錫球的位置……………………………………………33
圖3-13 衝擊力與時間關係圖…………………………………………34
圖3-14 破壞模式示意圖………………………………………………34
圖3-15 錫球破壞模式照片
(a)Mode B2 (b)Mode B3 (c)Mode B4 (d)Mode B5
(e)Mode C…………………………………………………….35
圖4-1 Sn/4.0Ag/0.5Cu、Sn/3.5Ag/0.75Cu、Sn/1.0Ag/1.0Cu撘配OSP在不同衝擊速度下的最大衝擊力變化圖……………………50
圖4-2 Sn/3.0Ag/0.5Cu、Sn/2.6Ag/0.6Cu撘配Ni/Au在不同衝擊速度下的最大衝擊力變化圖………………………………………50
圖4-3 Sn/4.0Ag/0.5Cu在各測試速度的破壞模式分布圖…………..51
圖4-4 Sn/3.5Ag/0.75Cu在各測試速度的破壞模式分布圖…………51
圖4-5 Sn/1.0Ag/1.0Cu在各測試速度的破壞模式分布圖…………..52
圖4-6 Sn/3.0Ag/0.5Cu在各測試速度的破壞模式分布圖…………..52
圖4-7 Sn/2.6Ag/0.6Cu在各測試速度的破壞模式分布圖………….53
圖4-8 Sn/4.0Ag/0.5Cu、Sn/3.5Ag/0.75Cu、Sn/1.0Ag/1.0Cu搭配OSP開使斷裂前被推行的距離隨不同測試速度的變化圖……....53
圖4-9 Sn/3.0Ag/0.5Cu、Sn/2.6Ag/0.6Cu搭配Ni/Au開使斷裂前被推行的距離隨不同測試速度的變化圖………………………..54
圖4-10 Sn/4.0Ag/0.5Cu、Sn/3.5Ag/0.75Cu、Sn/1.0Ag/1.0Cu搭配OSP的勁度隨不同測試速度的變化圖…………………………..54
圖4-11 Sn/3.0Ag/0.5Cu、Sn/2.6Ag/0.6Cu搭配Ni/Au的勁度隨不同測試速度的變化圖…………………………………………..55
圖4-12 Sn/4.0Ag/0.5Cu、Sn/3.5Ag/0.75Cu、Sn/1.0Ag/1.0Cu搭配OSP開始斷裂前所需衝擊能隨不同測試速度的變化圖………..55
圖4-13 Sn/3.0Ag/0.5Cu、Sn/2.6Ag/0.6Cu搭配Ni/Au開始斷裂前所需衝擊能隨不同測試速度的變化圖………………………..56
圖4-14 Sn/4.0Ag/0.5Cu、Sn/3.5Ag/0.75Cu、Sn/1.0Ag/1.0Cu撘配Ni/Au和Sn/3.0Ag/0.5Cu、Sn/2.6Ag/0.6Cu撘配OSP在不同落錘質量下的最大衝擊力比較圖…………………………………..57
圖4-15 Sn/4.0Ag/0.5Cu在不同落錘實驗中各破壞模式分布圖…...57
圖4-16 Sn/3.5Ag/0.75Cu在不同落錘實驗中各破壞模式分布圖….58
圖4-17 Sn/1.0Ag/1.0Cu在不同落錘實驗中各破壞模式分布圖……58
圖4-18 Sn/3.0Ag/0.5Cu在不同落錘實驗中各破壞模式分布圖……59
圖4-19 Sn/2.6Ag/0.6Cu在不同落錘實驗中各破壞模式分布圖……59
圖4-20 Sn/4.0Ag/0.5Cu、Sn/3.5Ag/0.75Cu、Sn/1.0Ag/1.0Cu搭配Ni/Au和Sn/3.0Ag/0.5Cu、Sn/2.6Ag/0.6Cu搭配OSP在不同落錘實驗中的勁度比較……………………………………..60
圖4-21 Sn/4.0Ag/0.5Cu、Sn/3.5Ag/0.75Cu、Sn/1.0Ag/1.0Cu搭配Ni/Au和Sn/3.0Ag/0.5Cu、Sn/2.6Ag/0.6Cu搭配OSP在不同落錘實驗中錫球開始斷裂所需時間比較…………………..61
圖4-22 Sn/4.0Ag/0.5Cu、Sn/3.5Ag/0.75Cu、Sn/1.0Ag/1.0Cu搭配Ni/Au和Sn/3.0Ag/0.5Cu、Sn/2.6Ag/0.6Cu搭配OSP在不同落錘實驗中開始斷裂所需衝擊能比較……………………..62
圖4-23 Sn/3.5Ag/0.75Cu(Ni/Au)、Sn/3.0Ag/0.5Cu(OSP)的最大衝擊力隨迴焊次數變化圖…………………………………..63
圖4-24 Sn/3.5Ag/0.75Cu(Ni/Au)、Sn/3.0Ag/0.5Cu(OSP)的衝擊能隨迴焊次數變化圖………………………………………..63
圖4-25 Sn/3.5Ag/0.75Cu(Ni/Au)在各迴焊次數的破壞模式分布…64
圖4-26 Sn/3.0Ag/0.5Cu(OSP)在各迴焊次數的破壞模式分布….64
圖4-27 Sn/3.5Ag/0.75Cu(Ni/Au)、Sn/3.0Ag/0.5Cu(OSP)開始斷裂所需時間隨迴焊次數變化圖……………………………..65
圖4-28 Sn/3.5Ag/0.75Cu(Ni/Au)、Sn/3.0Ag/0.5Cu(OSP)的勁度隨迴焊次數變化圖…………………………………………..65
圖4-29 Sn/3.5Ag/0.75Cu(Ni/Au)錫球剖面圖……………………66
圖4-30 Sn/3.0Ag/0.5Cu(OSP)錫球剖面圖……………………….67
圖4-31 Sn/4.0Ag/0.5Cu、Sn/3.5Ag/0.75Cu、Sn/1.0Ag/1.0Cu 搭配OSP與Sn/2.6Ag/0.6Cu搭配Ni/Au的最大衝擊力隨放置天數變化圖……………………………………………………………..68
圖4-32 Sn/4.0Ag/0.5Cu、Sn/3.5Ag/0.75Cu、Sn/1.0Ag/1.0Cu 搭配OSP與Sn/2.6Ag/0.6Cu搭配Ni/Au的衝擊能隨不同放置天數的變化圖…………………………………………………………..69
圖4-33 Sn/4.0Ag/0.5Cu、Sn/3.5Ag/0.75Cu、Sn/1.0Ag/1.0Cu 搭配OSP與Sn/2.6Ag/0.6Cu搭配Ni/Au的勁度隨不同放置天數的變化圖……………………………………………………………..70
圖4-34 Sn/4.0Ag/0.5Cu、Sn/3.5Ag/0.75Cu、Sn/1.0Ag/1.0Cu 搭配OSP與Sn/2.6Ag/0.6Cu搭配Ni/Au開始斷裂所需時間隨不同放置天數的變化圖………………………………………………..71
圖4-35 Sn/4.0Ag/0.5Cu(OSP)不同放置天數的破壞模式分布….71
圖4-36 Sn/3.5Ag/0.75Cu(OSP)不同放置天數的破壞模式分布…72
圖4-37 Sn/1.0Ag/1.0Cu(OSP)不同放置天數的破壞模式分布….72
圖4-38 Sn/2.6Ag/0.6Cu(Ni/Au)不同放置天數的破壞模式分布…73
圖4-39 Sn/3.0Ag/0.5Cu(Ni/Au)的最大衝擊力與數據變異性隨放置天數變化圖…………………………………………………..73
圖5-1 五種錫球在0.6m/s測試速度下各破壞模式的衝擊力比較…81
圖5-2 五種錫球在0.7m/s測試速度下各破壞模式的衝擊力比較…81
圖5-3 五種錫球在1.0m/s測試速度下各破壞模式的衝擊力比較…82
圖5-4 五種錫球在1.4m/s測試速度下各破壞模式的衝擊力比較…82
圖5-5 五種錫球在1.7m/s測試速度下各破壞模式的衝擊力比較…83
圖5-6 五種錫球在不同測試速度下的衝擊力比較…………………83
圖5-7 五種錫球在不同測試速度下的延性比較……………………84
圖5-8 五種錫球在不同測試速度下的衝擊能比較…………………84
參考文獻 References
[1] Keith Newman, “BGA Brittle Fracture-Alternative Solder Joint Integrity Test Methods,” Electronic Components and Technology Conference, pp. 1194-1201, 2005.
[2] Yi-Shao Lai, Ping-Fong Yang, Chang-Lin Yeh, Heng-Yu Kung, “Board-Level Reliability of Chip-Scale Packages Subjected to JEDEC Drop Test Condition,” In Proceedings of IMAPS Taiwan 2005 International Technical Symposium, pp. 50-55, 2005.
[3] E. H. Wong, R. Rajoo, Y. W. Mai, S. K. W. Seah, K. T. Tsai, andL. M. Yap, “Drop Impact : Fundamentals and Impact Characterisation of Solder Joints,” Proceedings 55th Electronic Components and Technology Conference, pp. 1202-1209, 2005
[4] C. F. Chan (Motorola), S. K. Lahiri (SMA), P. Yuan (Motorola) and J. B. H. How (Motorola) “ An intermetallic study of solder joints with Sn-Ag-Cu lead-free solder,” Electronics Packaging Technology Conference, pp. 72-80, 2000.
[5] H. D. Yang, S. Canumalla and P. Viswanadham, “Package to Board Interconnection Shear Strength (PBISS):Effect of Surface Finish, PWB Build-up Layer and Chip Scale Package Structure,” IEEE Transactions on Components and Packaging Technologies, Vol. 27, pp. 182-190, March 2004.
[6] S. Ou, Y. Xu and K. N. Tu, “Micro-Impact Test on Lead-Free BGA Balls on Au/Electrolytic Ni/Cu Bond Pad,” Electronic Components and Technology Conference, pp. 467-471, 2005.
[7] S. W. Lee, C. C. Yan, Z. Karim and X. Huang, “Assessment on the Effects of Electroless Nickel Plating on the Reliability of Solder Ball Attachment to the Bond Pads of PBGA Substrate,” Proceedings 50th Electronic Components and Technology Conference, pp.868-873, 2000
[8] S-R Tzan and S-L Chu “Characterization of Lead-free Solder by Reliability Testing,” IEEE/CPMT Electronics Manufacturing Technology Symposium, 2000.
[9] Dave Reiff and Edwin Bradley, “A Novel Mechanical Shock Test Method to Evaluate Lead-Free BGA Solder Joint Reliability,” Electronic Components and Technology Conference, pp. 1519-1525, 2005.
[10] Li Xiao, Johan Liu, Zonghe Liu, Lilei Ye and Anders Tholen, “Characterization of Mechanical Properties of Bulk Lead Free Solders,” International Symposium on Advanced Packaging Materials, pp. 145-151, 2000.
[11] Desmond Y. R. Chong, Kellin Ng, Jane Y. N. Tan, and Patrick T. H. Low, “Drop Test Reliability Assessment of Leaded & Lead-Free Solder Joints for IC Packages,” Electronics Packaging Technology Conference, 2004
[12] Jinlin Wang, H. K. Lim, H. S. Lew, Woon Theng Saw, Chew Hong Tan, “A testing Method for Assessing Solder Joint Reliability of FCBGA Packages,” Microelectronics Reliability 44, pp. 833-840, 2004
[13] Li Li, Jin-Wook Jang and Becky Allmen, “Shear Property and Microstructure Evaluation of Pb-free Solder Bumps under Room Temperature and Multiple Reflow/High Temperature Aging,” International Symposium on Advanced Packaging Materials, pp. 347-353, 2001
[14] Yi-Shao Lai, Po-Chuan Yang, Chang-Lin Yeh, Tong-Hong Wang, “Impact of Various JEDEC Drop Test Conditions on Board-level Reliability of Chip-Scale Packages,” International Symposium on Microelectronics, pp. 199-205, 2005.
[15] Yi-Shao Lai, Ping-Fong Yang, Chang-Lin Yeh, Ching-I Tsai, “Board-Level Drop Performance of Lead-Free Chip-Scale Packages with Different Soldermask Openings and Solder Compositions,” International Conference on Electronics Materials and Packaging, pp. 56-60, 2004.
[16] Chang-Lin Yeh, Yi-Shao Lai, “Transient Analysis of Board-Level Drop Response of Lead-Free Chip-Scale Packages with Experimental Verifications,” Electronics Packaging Technology Conference, pp. 695-700, 2004.
[17] Chang-Lin Yeh, Yi-Shao Lai, Chin-Li Kao, “Prediction of Board-Level Reliability of Chip-Scale Packages under Consecutive Drops,” Electronics Packaging Technology Conference, pp. 73-80, 2005.
[18] Chang-Lin Yeh, Yi-Shao Lai, Chin-Li Kao, “Prediction of Board-Level Reliability of Chip-Scale Packages with Experimental Verifications,” International Symposium on Microelectronics, pp. 586-593, 2005.
[19] Chang-Lin Yeh, Yi-Shao Lai, “Transient Simulation of Solder Joint Fracturing undert Impact Test,” Electronics Packaging Technology Conference, pp. 689-694, 2004.
[20] Chang-Lin Yeh, Yi-Shao Lai, “Transient Analysis of Impact Fracturing of Solder Joints,” International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Microelectronics and Microsystems, pp. 503-509, 2005.
[21] Chang-Lin Yeh, Yi-Shao Lai, “Development of Ball Impact Test System,” ITherm 2006, San Diego, USA
[22] Chang-Lin Yeh, Yi-Shao Lai, “Parametric Study for Ball Impact Test,” Proceedings of 2005 Taiwan ANSYS Users Conference, pp. 2.15-2.25, Hualian, Taiwan.
[23] Chang-Lin Yeh, Yi-Shao Lai, Hsiao-Chuan Chang, Tsan-Hsien Chen, “Correlation Between Package-level Ball Impact Test and Boad-level Drop Test,” Proceedings of EPTC 2005, pp. 270-275, Singapore.
[24] 陳建銘, “無鉛錫球封裝晶片之掉落衝擊測試”, 碩士論文, 國立中山大學機械與機電工程學系硏究所, 高雄 台灣, 2005
[25] 鍾文仁, 陳佑任, “IC封裝製程與CAE應用”, 全華科技圖書股份有限公司, 2005
[26] Plumbridge, W. J., et al., “Effects of Strain Rate and Temperature on the Stress-Strain Response of Solder Alloys,” Proceedings 2nd International Conference on Materials for Microelectronics, Bordeaux, France, Sep., 1998.
[27] Yi-Shao Lai, Chang-Lin Yeh, Hsiao-Chuan Chang, “Evalution of Solder Joint Strength Using Ball Impact Test,” IMAPS of Taiwan 2006.
[28] Richard J. Coyle, Patrick P. Solan, Anthony J. Serafino, and Stevan A. Gahr, “The Influence of Room Temperature Aging on Ball Shear Strength and Microstructure of Area Array Solder Balls,” Electronic Components and Technology Conference, 2000.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code