Responsive image
博碩士論文 etd-0718106-114037 詳細資訊
Title page for etd-0718106-114037
論文名稱
Title
影響人類visinin-like proteins 分子構形及其調控guanylyl cyclase活性之結構因子
The structural elements of human visinin-like proteins functionally affect its conformational transition and regulate the activity of guanylyl cyclase
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
58
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-14
繳交日期
Date of Submission
2006-07-18
關鍵字
Keywords
分子構形
visinin-like proteins, guanylyl cyclase
統計
Statistics
本論文已被瀏覽 5666 次,被下載 2024
The thesis/dissertation has been browsed 5666 times, has been downloaded 2024 times.
中文摘要
VILIP-1 已知可調控 Guanylyl cyclase-B (GC-B) 活性,增加細胞內 cGMP
濃度而 VILIP-3 則否。 本論文主要目標係探討 VILIP-1 調控 GC-B 活性
的因子,因此表現重組蛋白 Myristoylated 與 Nonmyristoylated VILIP-1、
VILIP-3、Chimeric VILIPs 和 Mutant VILIP-1,重組蛋白以離子交換層析與
分子篩 (Gel filtration) 方式進行純化。 Circular Dichroism 分析顯示
VILIPs 主要二級結構為 α-helix ,而以蛋白質酶水解方法及螢光分析證實
Myristoylation、Ca2+ 和Mg2+ 等均會影響 VILIPs 結構且會誘導不同的構形
變化。 分子篩結果顯示 VILIP-1 的 EF-hand 3&4 及 Myrstoylation 與
VILIP-1 的 Dimerization 有關,而 Dimer 與 Monomer 呈現動態平衡。 以
猪腦組織細胞膜與 Liposome binding assay 結果顯示 Myristoylation、Ca2+
和Mg2+ 會增加 VILIPs 與它們的結合能力。 In vitro guanylyl cyclase
activity assy 結果顯示 Myristoylation 和 VILIP-1 的 EF-hand 1 參與調控
GC 活性,而此作用需要Mg2+或Ca2+ 的存在。 以上結果證實 VILIP-1 的
Myristoylation 及EF-hand 1 在 VILIP-1 調控 GC 活性上具有重要密切關
係。 此調控作用與 Ca2+ 或 Mg2+ 誘導產生構形之變化有關,而增加
VILIP-1 結合至細胞膜上以協助 VILIP-1 調控 GC 活性; 但與
Oligomerization 狀態Dimerization 沒有相關性。
Abstract
It has been well-known that VILIP-1 but not VILIP-3 regulates the activity of
guanylyl cyclase-B. In order to identify the modulated region within VILIP-1
on regulating guanylyl cyclase-B activity, the recombinant myristoylated and
nonmyristoylated VILIPs (VILIP-1, VILIP-3, chimeric VILIPs, and mutant
VILIP-1) were prepared in the present study. The recombinant proteins were
purified using ion-exchanger chromatography followed by gel filtration. CD
spectra indicated that the secondary structure of VILIPs was dominant with
α-helix, reflecting a well-conserved EF-hand structure. Tryptic digestion assay
and the fluorescence measurement showed that myristoylation, Ca2+ and Mg2+
differently induced the conformational changes of VILIPs. The results of gel
filtration chromatography reflected that the EF-3&4 of VILIP-1 and
myristoylation were involved in the dimerization of VILIP-1, and the dimer and
monomer were converted each other in a dynamic manner. The porcine brain
membrane binding assay and liposome binding assay showed that the binding
capability of VILIPs were markedly enhanced by myristoylation, Mg2+ and Ca2+.
Myristoylation and the intact EF-1 of VILIP-1 were found to essential for
the regulation of guanylyl cyclase activity in the presence of Mg2+ and Ca2+.
Taken together, theses results suggest that myristoylation and EF hand-1 of
VILIP-1 are the structural elements crucial for regulating the guanylyl cyclase
activity. In contrast to oligomerization of VILIP-1, Mg2+ and Ca2+ -induced
conformational changes of VILIP-1 and enhancement of the binding of VILIP-1
with membrane by Mg2+ and Ca2+ partly but not heavily involve in the action.
目次 Table of Contents
中文摘要 ----------------------------------- i
英文摘要 ----------------------------------- ii
英文縮寫 ----------------------------------- 1
序言 --------------------------------------- 1
實驗材料 ----------------------------------- 4
實驗方法 ----------------------------------- 6
結果 --------------------------------------- 15
討論 --------------------------------------- 20
參考文獻 ----------------------------------- 23
表 ----------------------------------------- 29
圖 ----------------------------------------- 32
參考文獻 References
Ames, J. B., Ishima, R., Tanaka, T., Gordon, J. I., Stryer, L., and Ikura, M. (1997). Molecular mechanics of calcium-myristoyl switches. Nature, 389, 198-202

Bernstein, H. G., Baumann, B., Danos, P., Diekmann, S., Bogerts, B., Gundelfinger, E. D., and Braunewell, K. H. (1999). Regional and cellular distribution of neural visinin-like protein immunoreactivities (VILIP-1 and VILIP-3) in human brain. J. Neurocytol., 28, 655-662

Brackmann, M., Schuchmann, S., Anand, R., and Braunewell, K.H. (2005) Neuronal Ca2+ sensor protein VILIP-1 affects cGMP signalling of guanylyl cyclase B by regulating clathrin-dependent receptor recycling in hippocampal neurons. J. Cell. Sci., 118, 2495-24505

Braunewell, K. H., and Gundelfinger, E. D. (1997). Low level expression of calcium-sensor protein VILIP induces cAMP-dependent differentiation in rat C6 glioma cells. Neurosci. Lett., 234, 139-142

Braunewell, K. H., and Gundelfinger, E. D. (1999). Intracellular neuronal calcium sensor proteins: a family of EF-hand calcium-binding proteins in search of a function. Cell Tissue Res., 295, 1-12

Braunewell, K. H., Brackmann, M., Schaupp, M., Spilker, C., Anand, R., and Gundelfinger, E. D. (2001). Intracellular neuronal calcium sensor (NCS) protein VILIP-1 modulates cGMP signalling pathways in transfected neural cells and cerebellar granule neurones. J. Neurochem., 78, 1277-1286

Burgoyne, R. D., and Weiss, J. L. (2001). The neuronal calcium sensor family of Ca2+-binding proteins. Biochem. J., 353, 1-12

Chow, M., Newman, J.F.E., Filman, D., Hogle, J.M., Rowlands, D.J., and Brown, F. (1987) Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature., 327, 482-486

Dai, F.F., Zhang, Y., Kang, Y., Wang, Q., Gaisano, H.Y., Braunewell, K.H., Chan, C.B., and Wheeler, M.B. (2006) The neuronal Ca2+-sensor protein visinin-like-protein-1 (VILIP-1) is expressed in pancreatic islets and regulates insulin secretion. J. Biol. Chem., [Epub ahead of print]
Ermilov, A. N., Olshevskaya, E. V., and Dizhoor, A. M. (2001) Instead of binding calcium, one of the EF-hand structures in guanylyl cyclase activating protein-2 is required for targeting photoreceptor guanylyl cyclase. J. Biol. Chem., 276, 48143-48148

Folch, J., Lees, M., and Sloane Stanley, G.H. (1957) A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem., 226, 497-509

Gierke, P., Zhao, C., Brackmann, M., Linke, B., Heinemann, U., and Braunewell, K. H. (2004). Expression analysis of members of the neuronal calcium sensor protein family: combining bioinformatics and Western blot analysis. Biochem. Biophys. Res. Commun., 323, 38-43

Gonzalez Guerrico, A.M., Jaffer, Z.M., Page, R.E., Braunewell, K.H., Chernoff, J., Klein-Szanto, A.J. (2005) Visinin-like protein-1 is a potent inhibitor of cell adhesion and migration in squamous carcinoma cells. Oncogene., 24, 2307-2316

Hasse, A. and Bicker, G. (2003) Nitric oxide and cyclic nucleotides are regulators of neuronal migration in an insect embryo. Development., 130 3977-3987

Jheng, F.F. (2005) Conformational transition of VILIP1 and VILIP3 with binding of Mg2+ and Ca2+. NSYSU master thesis


Kobayashi, M., Takamatsu, K., Saitoh, S., and Noguchi, T. (1993) Myristoylation of hippocalcin is linked to its calcium-dependent membrane association properties. J. Biol. Chem., 268, 18898-18904

Krylov, D.M., Niemi, G.A., Dizhoor, A.M., and Hurley, J.B. (1999) Mapping sites in guanylyl cyclase activating protein-1 required for regulation of photoreceptor membrane guanylyl cyclases. J. Biol. Chem., 274, 10833-10839

Ladant, D. (1995) Calcium and membrane binding properties of bovine neurocalcin delta expressed in Escherichia coli. J. Biol. Chem., 270, 3179-3185

Lenz, S. E., Henschel, Y., Zopf, D., Voss, B., and Gundelfinger, E. D. (1992). VILIP, a cognate protein of the retinal calcium binding proteins visinin and recoverin, is expressed in the developing chicken brain. Brain Res. Mol. Brain Res., 15, 133-140

Lenz, S. E., Braunewell, K. H., Weise, C., Nedlina-Chittka, A., and Gundelfinger, E. D. (1996a). The neuronal EF-hand Ca(2+)-binding protein VILIP: interaction with cell membrane and actin-based cytoskeleton. Biochem. Biophys. Res. Commun., 225, 1078-1083

Lenz, S. E., Jiang, S., Braun, K., and Gundelfinger, E. D. (1996b). Localization of the neural calcium-binding protein VILIP (visinin-like protein) in neurons of the chick visual system and cerebellum. Cell Tissue Res., 283, 413-424

Lenz, S. E., Zuschratter, W., and Gundelfinger, E. D. (1996c). Distribution of visinin-like protein (VILIP) immunoreactivity in the hippocampus of the Mongolian gerbil (Meriones unguiculatus). Neurosci. Lett., 206, 133-136

Lin, L., Braunewell, K. H., Gundelfinger, E. D., and Anand, R. (2002a). Functional analysis of calcium-binding EF-hand motifs of visinin-like protein-1. Biochem. Biophys. Res. Commun., 296, 827-832

Lin, L., Jeanclos, E. M., Treuil, M., Braunewell, K. H., Gundelfinger, E. D., and Anand, R. (2002b). The calcium sensor protein visinin-like protein-1 modulates the surface expression and agonist sensitivity of the alpha 4beta 2 nicotinic acetylcholine receptor. J. Biol. Chem., 277, 41872-41878

Lodish, H., Berk, A., Zipursky, S. L., Matudaria, P., Baltimore, D., and Darnell, J. E. (1999a) in Molecular cell biology., (Sara, T., ed) 24, pp. 936, W. H. Freeman and company, New York

Lodish, H., Berk, A., Zipursky, S. L., Matudaria, P., Baltimore, D., and Darnell, J. E. (1999b) in Molecular cell biology., (Sara, T., ed) 24, pp. 585, W. H. Freeman and company, New York

Mathisen, P.M., Johnson, J.M., Kawczak, J.A., and Tuohy, V.K. (1999) Visinin-like protein (VILIP) is a neuron-specific calcium-dependent double-stranded RNA-binding protein. J. Biol. Chem., 274, 31571-31576

Mahloogi, H., Gonzalez-Guerrico, A. M., Lopez De Cicco, R., Bassi, D. E., Goodrow, T., Braunewell, K. H., and Klein-Szanto, A. J. (2003) Overexpression of the calcium sensor visinin-like protein-1 leads to a cAMP-mediated decrease of in vivo and in vitro growth and invasiveness of squamous cell carcinoma cells. Cancer Res., 63, 4997-5004

Muralidhar, D., Jobby, M.K., Krishnan, K., Annapurna, V., Chary, K.V., Jeromin, A., and Sharma, Y. (2005) Equilibrium unfolding of neuronal calcium sensor-1: N-terminal myristoylation influences unfolding and reduces protein stiffening in the presence of calcium. J. Biol. Chem., 280, 15569-15578

O'Callaghan, D.W., Hasdemir, B., Leighton, M., and Burgoyne, R.D. (2003a) Residues within the myristoylation motif determine intracellular targeting of the neuronal Ca2+ sensor protein KChIP1 to post-ER transport vesicles and traffic of Kv4 K+ channels. J. Cell. Sci., 116, 4833-4845

O'Callaghan, D.W., and Burgoyne, R.D.(2003b) Role of myristoylation in the intracellular targeting of neuronal calcium sensor (NCS) proteins. Biochem. Soc. Trans., 31, 963-965

O'Callaghan, D.W., Haynes, L.P., and Burgoyne, R.D. (2005) High-affinity interaction of the N-terminal myristoylation motif of the neruronal calcium sensor protein hippocalcin with phosphatidylinositol 4,5-bisphosphate. Biochem. J., 391, 231-238

Olshevskaya, E.V., Hughes, R.E., Hurley, J.B., and Dizhoor, A.M. (1997) Calcium binding, but not a calcium-myristoyl switch, controls the ability of guanylyl cyclase-activating protein GCAP-2 to regulate photoreceptor guanylyl cyclase. J. Biol. Chem., 272, 14327-14333

Olshevskaya, E.V., Boikov, S., Ermilov, A., Krylov, D., Hurley, J.B., and Dizhoor, A.M. (1999a) Mapping functional domains of the guanylate cyclase regulator protein, GCAP-2. J. Biol. Chem., 274, 10823-10832

Olshevskaya, E.V., Ermilov, A.N., and Dizhoor, A.M. (1999b) Dimerization of guanylyl cyclase-activating protein and a mechanism of photoreceptor guanylyl cyclase activation. J. Biol. Chem., 274, 25583-25587

Osawa, M., Dace, A., Tong, K.I., Valiveti, A., Ikura, M., and Ames, J.B. (2001) Mg2+ and Ca2+ differentially regulate DNA binding and dimerization of DREAM. J. Biol. Chem., 276, 41005-41013

Osawa, M., Dace, A., Tong, K. I., Valiveti, A., Ikura, M., and Ames, J. B. (2005). Mg2+ and Ca2+ differentially regulate DNA binding. Physiol. Gastrointest. Liver Physiol., 283, G1290-1297

Ozawa, T., Fukuda, M., Nara, M., Nakamura, A., Komine, Y., Kohama, K., and Umezawa, Y. (2000) How can Ca2+ selectively activate recoverin in the presence of Mg2+? Surface plasmon resonance and FT-IR spectroscopic studies. Biochemistry., 39, 14495-14503.

Peshenko, I.V., and Dizhoor, A.M. (2004) Guanylyl cyclase-activating proteins (GCAPs) are Ca2+/Mg2+ sensors. J. Biol. Chem., 279, 16903-16906

Resh, M.D. (1999) Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochem. Biophys. Res. Commun., 1451 , 1-16

Schulz S. (2005) C-type natriuretic peptide and guanylyl cyclase B receptor. Peptides., 26, 1024-34.

Spilker, C., Gundelfinger, E.D., and Braunewell, K.H. (1997) Calcium- and myristoyl- dependent subcellular localization of the neuronal calcium-binding protein VILIP in transfected PC12 cells. Neurosci. Lett., 225, 126-128

Spilker, C., Richter, K., Smalla, K. H., Manahan-Vaughan, D., Gundelfinger, E. D., and Braunewell, K. H. (2000). The neuronal EF-hand calcium-binding protein visinin-like protein-3 is expressed in cerebellar Purkinje cells and shows a calcium-dependent membrane association. Neurosci., 96, 121-129

Spilker, C., Dresbach, T., and Braunewell, K.H. (2002a) Reversible translocation and activity-dependent localization of the calcium-myristoyl switch protein VILIP-1 to different membrane compartments in living hippocampal neurons. J. Neurosci., 22, 7331-7339

Spilker, C., Gundelfinger E.D., and Braunewell K.H. (2002b) Evidence for different functional properties of the neuronal calcium sensor proteins VILIP-1 and VILIP-3: from subcellular localization to cellular function. Biochim. Biophys. Acta., 1600, 118-127

Spilker, C., and Braunewell, K.H. (2003) Calcium-myristoyl switch, subcellular localization, and calcium-dependent translocation of the neuronal calcium sensor protein VILIP-3, and comparison with VILIP-1 in hippocampal neurons. Mol. Cell. Neurosci., 24, 766-778

Tanaka, T., Ames, J. B., Harvey, T. S., Stryer, L., and Ikura, M. (1995) Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature., 376, 444-447

Wickborn, C., Klein-Szanto, A.J., Schlag, P.M., and Braunewell, K.H. (2006) Correlation of visinin-like-protein-1 expression with clinicopathological features in squamous cell carcinoma of the esophagus. Mol. Carcinog., 2006 [Epub ahead of print]

Zhao, X., Varnai, P., Tuymetova, G., Balla, A., Toth, Z.E., Oker-Blom, C., Roder, J., Jeromin, A., and Balla, T. (2001) Interaction of neuronal calcium sensor-1 (NCS-1) with phosphatidylinositol 4-kinase beta stimulates lipid kinase activity and affects membrane trafficking in COS-7 cells. J. Biol. Chem., 276, 40183-40189

Zheng, J., Knighton, D.R., Xuong, N.H., Taylor, S.S., Sowadski, J.M., and Ten Eyck, L.F. (1993) Crystal structures of the myristylated catalytic subunit of cAMP-dependent protein kinase reveal open and closed conformations. Protein Sci., 2, 1559-1573

Zozulya, S., and Stryer, L. (1992) Calcium-Myristoyl Protein Switch. Proc. Natl. Acad. Sci., U. S. A. 89, 11569-11573

Zozulya, S., Ladant, D., and Stryer, L. (1995) Expression and characterization of calcium-myristoyl switch proteins. in Methods. Enzymol., (Colowick, S.P. and Kaplan, N.O., ed) 250, pp. 383-393. Academic Press., New York
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code