Responsive image
博碩士論文 etd-0718106-155729 詳細資訊
Title page for etd-0718106-155729
論文名稱
Title
分子動力模擬固化過程溶質在介面之濃度分佈
Molecular dynamic simulation of solute concentration in front of a solidifict front
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
69
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-30
繳交日期
Date of Submission
2006-07-18
關鍵字
Keywords
擴散、固化過程、固液界面
solidification, solid-liquid interface, Molecular dynamic simulation
統計
Statistics
本論文已被瀏覽 5624 次,被下載 2582
The thesis/dissertation has been browsed 5624 times, has been downloaded 2582 times.
中文摘要
本論文是以分子動力模擬在非平衡狀態,二元合金固液體在快速冷卻固化過程中系統受一個拉的速度(V),其固-液界面區模擬濃度、溫度、密度和擴散系數的變化。
在快速冷卻中,控制固化速度為本文重要的變數(固化速度為系統受一個拉速度所轉化),速度(V)值會受原子勢能、系統溫度和密度的影響而產生出不同的變化,因此系統雖然是受一個固定拉速度,但系統每一個原子的速度卻不為一個常數,而速度V也會逐漸的轉換成溶質分離和陷落的驅動力。
在分離(segregation)的狀態控制下,我們可以重新得到一個液體區溶質的濃度分佈,而溶質的陷入或靜止則取決於V的增加或減少,因此我們可以從理論性的Aziz模型(J.Appl.Phys.53,1158~1981)來映證本文答案。
Abstract
We use molecular dynamics to simulate the rapid directional solidification of binary alloy solid-liquid interface in the non-equilibrium state. In the pulling fixed velocities, we report the temperature, density, and diffusion coefficient of the interface.
In cooling fast, controlling the velocities of solidification for the important parameter of this text,it produces different changes that velocity value will be affected by atom potential energy and system temperature and density,though the system is pulling a fixed velocities, that the speed of every atom of the system is all not constant .The velocity will be changed into the driving force that the solute will be separated and trapped.
In the segregation regime, we recover the exponential form of the concentration profile within the liquid phase. Solute trapping is shown to settle in progressively as V is increased or reduction and our results are in good agreement with the theoretical predictions of Aziz.
目次 Table of Contents
第一章 序論
1.1 前言……………………………………………………… 1
1.2 文獻回顧………………………………………………… 3
第二章 固化理論
2.1 凝固簡介………………………………………………… 6
2.2 二元合金的凝固模式…………………………………… 7
2.3 凝固過程中溶質再分配………………………………… 9
第三章 分子動力學
3.1 基本原理………………………………………………… 14
3.2 勢能函數………………………………………………… 19
3.2.a Lennard-Jones potential…………………………… 22
3.2.b Morse potential……………………………………… 23
3.3 運動方程式
3.3.a Verlet algorithm……………………………………… 24
3.3.b Leap-Frog algorithm………………………………… 25
3.3.c Beeman algorithm……………………………………… 26
3.4 截斷勢能………………………………………………… 27
3.5 週期性幾何邊界條件…………………………………… 28
3.5.a 最小映象法……………………………………………… 28
3.6 Rescaling 溫度修正…………………………………… 30
3.7 分子動力學數值方法
3.7.a Verlet List 表列法…………………………………… 33
3.7.b Cell Link 表列法……………………………………… 34
3.7.c Verlet List 表列法結合Cell Link 表列法………… 36
3.7.d 無因次化……………………………………………… 37
3.8 系統熱力性質和動力特性……………………………… 39
第四章 建立物理模型
4.1 物理模型簡介…………………………………………… 40
4.2 模型物理參數…………………………………………… 41
4.3 模擬控制………………………………………………… 42
4.4 初始的系統濃度分配和二元相圖的運用……………… 46
第五章 模擬結果
5.1 分離的效應(segregation coefficient)…………… 51
5.2 對流速度………………………………………………… 53
第六章 結論與未來展望
6.1 結果與討論……………………………………………… 56
6.2 未來展望和建議………………………………………… 57
參考文獻………………………………………………………… 58
參考文獻 References
[1] B. Billia and R. Trivedi, in Handbook of Crystal Growth, Vol. Ib,edited by D. T. J. Hurle (North-Holland, Amsterdam, 1993).

[2] K. Kassner, Pattern Formation in Diffusion-Limited Crystal
Growth (World Scientific, Singapore, 1996).

[3] F. F. Abraham and J. Q. Broughton, Phys. Rev. Lett. 56, 734
(1986).

[4] D. K. Chokappa, S. J. Cook, and P. Clancy, Phys. Rev. B 39,
10075 (1992).

[5] C. F. Richardson and P. Clancy, Phys. Rev. B 45, 12 260 ~1992

[6] M. J. P. Nijmeijer and D. P. Landau, Comput. Mater. Sci. 1, 389
(1993).

[7] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak,Molecular Dynamics with Coupling to an External Bath, J. Chem. Phys., vol.81, no.8, pp. 3684-3690,(1984)

[8] D. J. Evans, Homogeneous NEMD Algorithm for Thermal Conductivity: Application ofNon-Canonical Linear Response Theory, Phys. Lett.,
vol.91A, pp. 457-460,(1982)

[9] S.Maruyama and T.Kimura, A Study on Thermal Resistance over a Solid-Liquid Interface by the Molecular Dynamics Method, Thermal Sci. Eng.,vol.7,no.1,pp.63-68,(1999)

[10] T.Ohara and D.Suzuki,Intermolecular Energy Transfer at a Solid-Liquid Interface, Micro.Thermophys. Eng.,vol.4, no.3, pp.189-196,(2000)

[11] L. Xue, P. Keblinski, S. R. Phillpot, S. U. S. Choi and J. A. Eastman, Two Regimes of Thermal Resistance at a Liquid-Solid Interface, J.Chem.Phys, vol.118,no.1,(2003).
[12] B. C. Daly and H. J. Maris, Calculation of the Thermal Conductivity of Superlattices by Molecular Dynamics Simulation, Physica B,vol.316-317,pp.247-249,(2002)

[13] M. Matsumoto, H. Wakabayashi and T. Makino, Thermal Resistance of Crystal Interface: Molecular Dynamics Simulation, Trans. JSME,Ser.B,vol.68,no.671,pp.1919-1925,(2002).

[14] S-H.Choi,S.Maruyama, K-K Kim and J-H.Lee,Feasibility Study of a New Model for the Thermal Boundary Resistance at Thin Film Interfaces,J.Kor, Phys.Soc,vol.44,no.2,pp.317-325,(2004)

[15] T.Ohara,Intermolecular Energy Transfer in Liquid Water and Its Contribution to Heat Conduction: An Molecular Dynamics Study, J.Chem.Phys,vol.111,pp.6492-6500,(1999)

[16] T.Ohara, Contribution of Intermolecular Energy Transfer to Heat Conduction in a Simple Liquid,J.Chem.Phys,vol.111,
pp.9667-9672,(1999)

[17] P.Z. Coura,O.N.Mesquita,and B.V.Costa,Phys.Rev.B vol.59,3408 (1999).

[18] J.Irving,J.Kirkwood, The statistical mechanical theorey of transport properties. IV. The equations of hydrodynamics, Journal of Chemical Physics,Vol.18,pp.817-829,(1995).

[19] J.Haile,Molecular Dynamics Simulation: Elementary Methods, JohnWiley & Sons,Inc.,New York,(1997)

[20] Rapaport,The Art of Molecular Dynamics Simulation, Cambridge University Press, London,(1997)

[21] J.Goodfellow ,Molecular dynamics, CRC Press, Boston,(1990)

[22] M.Allen,D.Tildesley ,Computer Simulation of Liquids,Oxford Science, London,(1991).

[23] D.Frenkel,B.Smit,Understanding Molecular Simulation, Academic Press, San Diego,(1996).

[24] D. Heermann,Computer Simulation Method, Springer-Verlag, Berlin,(1990)

[25] 朱訓鵬,“分子動力學與平行運算於奈米薄膜沈積模擬之應用”,
國立成功大學機械工程學系博士論文,(2002)

[26] M.Schneider、Ivan K. Schuller and A. Rahman,“Epitaxial growth of silicon: A molecular dynamics simulation”,Phys.Rev.B
vol.36,pp.1340-1343,(1987)

[27] B. Billia and R. Trivedi, in Handbook of Crystal Growth, Vol. Ib,edited by D.T.J.Hurle(North Holland, Amsterdam,1993)

[28] K.Kassner,Pattern Formation in Diffusion-Limited Crystal Growth,(World Scientific,Singapore, 1996)

[29] F.F.Abraham and J.Q.Broughton,Phys Rev.Lett.vol.56,734 (1986)

[30] D.K.Chokappa,S.J.Cook and P.Clancy,Phys.Rev.B.vol.39,10075 (1992)

[31] C.F.Richardson and P.Clancy,Phys.Rev.B.vol.45,12260 (1992)

[32] P.Z.Coura,O.N.Mesquita and B.V.Costa,Phys.Rev.B vol.59,3408 (1999).

[33] J.S. Rowlinson in Liquids and liquids mixtures, Ed. Butterworth Scientific (London,1982)

[34] D.Beeman,J.Comp.Phys.vol.20,130 (1976)

[35] M. R. Hitchcock and C. K. Hall,J. Chem. Phys.110,11433 (1999).

[36] M.J.Aziz,J.Appl.Phys.vol.53,1158(1981)

[37] R.F.Wood and G.E.Giles,Phys.Rev.B.vol.23,2923 (1981)

[38] J. W. Cahn,S.R.Coriell and W.J.Boettinger,in Laser and electron beam processing of materials, Ed. C. W. White and P. S. Peercy (Academic, New York, 1980).

[39] For the succinonitrile-10% aceton alloy, the capillary length is about 3 °A.

[40] X.Cottin and P.A.Monson,J.Chem.Phys.vol.105,10022 (1996)

[41] F.Ercolessi,M.Parrinello,and E.Tossati Phil.Mag.A vol.58,213 (1988).

[42] M.S.Daw, and M.I.Baskes,Phys.Rev.B.vol.29,6443 (1984).

[43] K.W.Jacobsen, J.K.Nørskov,and M.J.Puska,Phys.Rev.B.vol.35, 7423 (1987).

[44] H. M¨uller-Krumbhaar and W. Kurz,Solidification in Materials Science and Technology, edited by R.W. Cahn, P.Haasen, and E.J. Kramer p.55 (VCH Verlagsgesellshaft, Weinheim,1991)

[45] A. Karma and A. Sakrissian, Phys.Rev.Lett.vol.68, 2616 (1992); Phys.Rev.E vol.47,513(1993)

[46] 林詠勝“水分子在奈米侷限空間下之行為“ 國立中山大學機械與機電工程學系碩士論文,(2005).

[47] 蘇哲暐“以分子動力學模擬薄膜之沈積“ 國立中央大學光電科學研究所碩士論文,(2003).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code