Responsive image
博碩士論文 etd-0718106-162222 詳細資訊
Title page for etd-0718106-162222
論文名稱
Title
錫球衝擊測試材料組成率參數探討
Parametric Study of Solder Ball due to Impact Test
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-22
繳交日期
Date of Submission
2006-07-18
關鍵字
Keywords
數值分析、衝擊、無鉛錫球、介金屬、高應變率
Lead-free solder, Impact, Numerical analysis, IMC, High strain rate
統計
Statistics
本論文已被瀏覽 5663 次,被下載 24
The thesis/dissertation has been browsed 5663 times, has been downloaded 24 times.
中文摘要
隨著電子封裝朝無鉛製程的發展,可攜式電子產品受到衝擊負載的研究亦漸漸的受到重視。目前掉落測試,大部分的破壞模式都發生在介金屬層(IMC)或介金屬層與錫球的邊界上。本文利用3D數值分析軟體ANSYS/LS_DYNA,找出適合的數值模型來進一步分析無鉛錫球受到衝擊負載後,錫球斷裂情形。本文主要是比較模擬和衝擊試驗系統的關係,研究衝擊應力對於各種參數的探討去分析錫球衝擊試驗中的影響結果,利用數值方式和實驗衝擊位移跟錫球接點的可靠度研究,以及探討IMC層的失效模式,改變尺寸大小參數觀察對整體衝擊試驗的影響。
由數值分析結果可知,在此高應變率下,可以觀察錫球接點的機械性質。不同IMC強度下則會產生錫球三種斷裂之破壞模式,而含有IMC與部份錫球斷裂情形之破壞模式則需要更精細的有限元素模型才能產生。此外,發現到速度對於衝擊試驗有相當的影響,速度越快所得到的衝擊應力越小,主要由於錫球材料參數需採用與應變率相依之參數,衝擊測試實際上並非單純的剪力作用。使用模擬來進行此動態實驗可更有效觀察到錫球接點受到破壞的過程。
Abstract
With the electronic packaging towards the rapid development of lead free process, the related research on the portable electronic devices subject to impact load is emphasized urgently. At present, the failure modes of fracturing in IMC layer and fracturing on IMC/solder boundary are mostly encountered due to drop test and cyclic bending test respectively. The purpose of this work is to use 3D numerical analysis software ANSYS/LS_DYNA, that were found to be a suitable numerical model for further analyzing the impact fracture of lead-free solder. The relationship between simulation and ball impact test system was compared and the effects of variable parameters on solder balls subjected to impact loading was investigated. Also, the transient deformation and fracturing of solder joints subjected to the impact load were studied numerically and experimentally. Then, the transient response and the failure modes of the solder joint due to impact load were predicted by varied strain rate tests.
From the numerical results, the strain rate mechanical properties of solder joint due to high can be effectively obtained. The difference of IMC strength caused three kinds of failure modes of the solder ball, however the failure mode of fracturing in IMC and a party of solder requires a model to simulate with more refined meshes. Different velocities affected the numerical results significantly. The higher the velocity of impact test applied, the lower the impact loading received. That is mainly attributed to the material parameters adopted of a solder ball is strongly dependent on the strain rate considered. Also, it is found that the impact test in reality does not result in a shear-dominant failure mode. While using dynamic simulation instead of the experiment, the damage process of solder joint can be observed. That provides a good reference and contrast for the experimental work in the future.
目次 Table of Contents
目錄 5
第一章、緒論 12
1-1 前言 12
1-2 封裝簡介 12
1-3無鉛錫球的發展 14
1-4 研究方向及文獻回顧 16
1-5 組織與章節 18
第二章 模擬規劃與理論基礎 22
2-1 模擬分析目的與動機 22
2-2 衝擊理論 22
2-3 有限元素分析理論 27
2-3-1 顯性解法與隱性解法(Explicit Method & Implicit Method) 27
2-3-3 中央差分法 27
2-3-4 接觸演算法(Contact Algorithms) 28
2-3-5 時間步驟控制(Time Step Control) 29
2-3-6 沙漏現象(Hourglass deformation) 30
2-4 材料非線性 31
2-4-1 降伏條件 31
第三章、模型建立與參數討論 37
3-1 前言 37
3-2 物理模型 37
3-2-1 球碰撞平板耐久度模擬試驗 37
3-2-2 狗骨頭拉伸模型試驗 37
3-2-3 錫球衝擊試驗模擬模型 42
3-3 數值模型討論 42
3-3-1 基本假設 43
3-3-2 介金屬(IMC)破壞規範 44
3-3-3 材料參數 45
3-3-4 網格分析 46
3-3-5 定義破壞模式 46
3-4邊界條件討論 47
3-4-1邊界長度設定 47
3-6提出數值模型 47
第四章、模擬結果與討論 60
4-1 前言 60
4-2 破壞模式與IMC設定強度關係 60
4-3 改變錫球尺寸的影響 61
5-4 拒銲劑(Solder mask)厚度的研究 62
4-5 Pad 厚度的參數研究 63
4-6 對於錫球材料參數的應變率研究 63
4-6-1 改變錫球材料參數-觀察衝擊應力 64
4-6-2 材料參數的討論 65
(1)改變楊氏係數 65
(2)改變應力應變數值-固定楊氏係數 66
第五章、討論分析 80
5-1 尺寸參數的改變 80
5-2 改變應變率和材料系數的衝擊試驗 80
第六章、結論與未來展望 85
6-1結論 85
6-2未來展望 85
參考文獻 References
1. European Union Waste in Electrical and Electronic Equipment (WEEE)Directive, 3rd Draft, May 2000.
2. Japanese Ministry of Health and Welfare Waste Regulation on Un-Reusable Pb, June 1998.
3. M. Date, T. Shoji, M. Fujiyoshi, K. Sato, K. N. Tu, “Impact Reliability of Solder Joints,” Electronic Components and Technology Conference, 2004.
4. 劉益銘,“電子構裝銦基無鉛銲錫與金厚膜及銀基板之界面反應研究”,國立台灣大學材料科學與工程學研究所博士論文,2001。
5. J. H. Lau, Y. H. Pao,“ Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies”, McGraw-Hill, Inc.,1997.
6. J. H. Lau, “Ball Grid Array Technology”, McGraw-Hill, Inc.,1995.
7. J. H. Lau, C. P. Wong, J. L. Prince, Wataru Nakayama, “Electronic Packaging: Design, Materials, Process, and Reliability”, McGraw-Hill, Inc., 1998.
8. ANSYS, Ansys Co. , Version 8.0, http://www.ansys.com/
9. T. Belytschko, J. -I. Lin, “A Three-dimensional Impact-penetration Algorithm with Erosion,” Computers & Structures Vol. 25, No. 1, pp. 95-104,(1987).
10. S. F. Dirnfeld, J. J. Ramon, “Microstructure investigation of copper-tin intermetallics and the influence of layer thickness on shear strength,” Welding J., pp. 373–377, Oct. 1990.
11. Robert Erich, Richard J. Coyle, George M.Wenger , Anthony Primavera, “Shear Testing and Failure Mode Analysis for Evaluation of BGA Ball Attachment, ” IEEE/CPMT Int. Electronics Manufacturing Technology Symposium, pp. 16-22, 1999.
12. A. Zribi, R. R. Chromik, R. Presthus, K. Teed, L. Zavalij, J. DeVita, J. Tova, Eric J. Cotts,James A. Clum,Robert Erich, A. Primavera, G. Westby, R. J. Coyle, and G. M. Wenger, “ Solder Metallization Interdiffusion in Microelectronic Interconnects, ” IEEE Transactions On Components And Packaging Technologies, Vol. 23, No. 2, pp. 383-387, June 2000.
13. Alfred Yeo, Charles Lee, John H.L. Pang, “Flip Chip Solder Joint Fatigue Analysis Using 2D and 3D FE Models, ” The 5th Thermal and Mechanical Simulation and Expertments in Micro-electronics and Micro-Systems Conference, pp. 549-555, 2004.
14. Kuo-Chin Chang, Kuo-Ning Chiang, “ Improvements of Solder Ball Shear Strength of a Wafer-Level CSP Using a Novel Cu Stud Technology,” IEEE Transactions On Components And Packaging Technologies, Vol. 27, No. 2, pp. 373-382, June 2004.
15. S. Wiese, K.-J. Wolter, “Time-independent elastic–plastic behaviour of solder materials,” Microelectronics Reliability, p.1893-1900, 2004.
16. Dae-Gon Kim, Jong-Woong Kim, Jung-Goo Lee, Hirotaro Mori, David J. Quesnel, Seung-Boo Jung, “Solid state interfacial reaction and joint strength of Sn–37Pb solder with Ni–P under bump metallization in flip chip application, ” Journal of Alloys and Compounds, 2005.
17. Chan-Lin Yeh, Yi-Shao Lai, Ping-Fong Yang, “Transient Deformation and Fracturing of Solder Joints Subjected to Impact Loads, ”The Annual Technology Workshop on Flip Chip Technology of International Microelectronics and Packaging Society, 2004.
18. Chan-Lin Yeh, Yi-Shao Lai, “Transient Simulation of Solder Joint Fracturing Under Impact Test, ” The 6th Electronics Packaging Technology Conference, 2004.
19. O. C. Zinkiewicz, “ The Finite Element Method, ” McGraw-Hill Inc., 3rd ED. , 1977.
20. J. N. Reddy, “An Introduction to the FEM, ” McGraw-Hill Inc., 1984.
21. Dr. Jin Liang and Dr. Nader Dariavach, “Deformation Behavior of Solder Alloys under Variable Strain Rate Shearing and Creep Condition” EMC corporation , 2005.
22. “Introduction to ANSYS Volume I Notes and Exercises, November”, Swanson Analysis System, Inc., 1997.
23. ANSYS Structural Nonlinearities User’s Guide Volume Ⅰ ” Swanson Analysis System, Inc., 1997.
24. “ANSYS Structural Nonlinearities User’s Guide Volume Ⅱ”, Swanson Analysis System, Inc., 1997.
25. “ANSYS Workbook”, March 1, Swanson Analysis System, Inc., 1993.
26. J. N. Reddy, “ Engineering and Variational Method in Applied Mechanics : Introduction to the FEM, ” Prentice Hall Inc., 1984.
27. K. J. Bathe, “ Finite Element Procedures Engineering Analysis, ” Prentice, Inc., NJ, 1982.
28. LS_DYNA KEYWORD USER’S MANUAL, Livermore Software Technonogy Corporation, 1998.
29. 李博裕,錫球接點在衝擊負載下斷裂的數值模擬方法,國立中山大學碩士論文,2005。
30. 劉立晟,覆晶錫球陣列封裝之無鉛錫球接點可靠度測試,國立中山大學碩士論文,2003。
31. 朱紹鎔譯, “ 材料力學”, 東華書局, 71 年4 月.
32. 趙建基, 姜信騰, 李青峰, 周意工, 陳豫台, 陳榮泰等譯, 劉漢誠著, “ 球腳格狀陣列封裝技術”, 鴻海精密工業, 1998.
33. P. R. Lavery, “An investigation of the thermal and mechanical properties of high lead-low tin alloy solders,” M.S. thesis, Darmouth College, Hanover, NG, 1987.
34. S. M. Lee, D. S. Stone, “Grain boundary sliding in surface mount solders during thermal cycling,” in Proc. 40th Elec. Comp. Tech. Conf., May 20-23, pp. 491-495, 1990.
35. S. Knecht, L. R. Fox, “Integrated matrix creep: Application to accelerated testing and lifetime prediction,” in Solder Joint Reliability: Theory and Applications, J. H. Lau, ed. New York: Van Nostrand Reinhold, 1991.
36. S. Michaelides, S. K. Sitaraman, “Effect of Material and Geometry Parameters on the Thermo-Mechanical Reliability of Flip-Chip Assembles.” Inter-Society Conference on Thermal Phenomena, pp. 193-200,1998.
37. D. Grivas, K. L. Murty, J. W. Morris, Jr., “Deformation of Pb-Sn eutectic alloys at relatively high strain rates,” Acta Metal. Vol. 27, pp. 731-733, 1979.
38. H. D. Solomon, “Low-Cycle Fatigue of 60Sn/40Pb Solder”, ASTM Special Technical Publication 459, Publ. By ASTM, Philadelphia, PA, USA, pp. 342-370,1985.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.147.43.136
論文開放下載的時間是 校外不公開

Your IP address is 3.147.43.136
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code