Responsive image
博碩士論文 etd-0718106-171946 詳細資訊
Title page for etd-0718106-171946
論文名稱
Title
南海北部現生浮游性有孔蟲組合及其碳氧同位素組成的季節性變化
Seasonal Variations of Assemblages and Stable Isotopic Compositions of Modern Planktonic Foraminifera in the Northern South China Sea
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-15
繳交日期
Date of Submission
2006-07-18
關鍵字
Keywords
浮游性有孔蟲、南海北部、碳氧同位素組成
Northern South China Sea, Stable Isotopic Compositions, Planktonic Foraminifera
統計
Statistics
本論文已被瀏覽 5750 次,被下載 1206
The thesis/dissertation has been browsed 5750 times, has been downloaded 1206 times.
中文摘要
本研究係利用國內海洋研究船,於2002年12月到2005年12月期間,在南海北部水深100m處採集拖網樣本,並在某些站位的各個不同深度採集拖網樣本和海水,對所收集的拖網樣本進行有孔蟲的計數、鑑種和殼體的碳氧同位素分析;海水樣本則進行碳氧同位素分析,藉以探討現生浮游性有孔蟲種屬的季節性變化及其殼體碳氧同位素值與週遭海水物理性質的關係。
觀測結果如下:南海北部現生浮游性有孔蟲的主要優勢種屬為Globigerinoides ruber、Globigerinoides sacculifer、Globigerinoides aequilateralis、Pulleniatina obliquiloculata、Neogloboquadrina dutertrei、Globorotalia menardii。同一測站不同季節的拖網樣本顯示,7月時以G. aequilateralis和G. menardii為優勢種屬,2月則以G. ruber、G. sacculifer和P. obliquiloculata居多。G. sacculifer和G. aequilateralis在沈降過程中較易受溶解效應的影響,造成殼體在海水中的相對豐度由海水表層至深層越來越低。古海洋研究中被視為黑潮的指示種屬P. obliquiloculata的相對豐度,在南海海盆由北到南有越來越低的趨勢,可能與距離黑潮主軸流之遠近有關。在拖網所採集的G. sacculifer和P. obliquiloculata,其殼體的δ13C、δ18O值較輕於沈積物收集器及表層沈積物樣本所測得的值,推測此兩種屬在沈降的過程中可能有差異溶解的現象。此外利用所分析的海水δ18O值,代入Kim and O’Neil (1997)的經驗方程式計算,推測P. obliquiloculata殼體所記錄的海水溫度介於50m~90m;N. dutertrei則是介於20m~80m。而根據Bouvier-Soumagnac and Duplessy (1985)的經驗方程式計算,N. dutertrei殼體記錄的海水溫度介於40m~160m。G. ruber和G. sacculifer殼體的δ18O值與海水混合層的溫度有明顯的關係,且兩種屬殼體的δ18O對混合層溫度的關係斜率非常相近。在南海適合用G. sacculifer和N. dutertrei、G. sacculifer和P. obliquiloculata、G. ruber和P. obliquiloculata之Δδ18O來重建過去海水層化現象的程度。
Abstract
The carbon and oxygen isotopes of planktonic foraminifera, and faunal assemblages of towing samples, δ13C of dissolved inorganic carbon, and δ18O of seawater collected from northern South China Sea (SCS) were analyzed in this study. Plankton tows were collected between December 2002 and December 2005 at water depth of 100m. In addition, fauna and sea water samples were sampled at different depths ranging between 50 and 300m at some stations.
Generally, the faunal assemblages are dominated by Globigerinoides ruber, Globigerinoides sacculifer, Globigerinoides aequilateralis, Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, and Globorotalia menardii. G. aequilateralis and G. menardii are dominated in warm months while G. ruber, G. sacculifer, and P. obliquiloculata are dominated in cold months. The relative abundances of G. sacculifer and G. aequilateralis obtained from towing samples in this study are significantly higher than those shown in underlying sediment traps and surface sediments, suggesting that the tests of these two taxa are prone to dissolution. In addition, the abundance of P. obliquiloculata which serves as an index taxon for the Kuroshio Current in Paleoceanography, is more abundant in the northern part than in the southern part of the SCS basin.
Nevertheless, the δ13C and δ18O of G. sacculifer and P. obliquiloculata are significantly lighter than that in sediment traps and surface sediments, indicating some potential effects caused by the differential dissolution. Possible dwelling depths of P. obliquiloculata is estimated between 50 and 90m, whereas N. dutertrei is estimated between 20 and 80m according to Kim and O’Neil (1997). The latter changes to 40~160m when the equation of Bouvier-Soumagnac and Duplessy (1985) is applied. Oxygen isotope compositions of G. sacculifer and G. ruber display a significant correlation with temperature (T) in the surface mixed layer. The slopes of δ18O/ T for these two species are similar to each other. The differences of δ18O (Δδ18O) between G. sacculifer and N. dutertrei, G. sacculifer and P. obliquiloculata, G. ruber and P. obliquiloculata are proved to be a good proxy indicator for reconstructing the upper water column based on the statistic relationship between Δδ18O and ΔT (difference between mixed layer and 100m) in this study.
目次 Table of Contents
誌謝 I
中文摘要 II
英文摘要 IV
目錄 VI
圖目錄 IX
表目錄 XI

壹 前言 1
1.1 研究背景 1
1.2 前人研究 3
1.3 研究區域 6
1.4 研究目的 7
貳 材料及方法 10
2.1 研究材料的採集 10
2.1.1 拖網 10
2.1.2 海水 16
2.2 分析方法 16
2.2.1 拖網的部分 16
A 浮游性有孔蟲的鑑種與豐度 16
B 浮游性有孔蟲殼體的碳、氧同位素 17
2.2.2 海水的部分 18
A 溶解態無機碳之穩定碳同位素 18
B 海水之氧同位素 20
參 結果與討論 21
3.1 浮游生物網 21
3.1.1 浮游性有孔蟲的計量結果 21
3.1.2 浮游性有孔蟲的相對豐度結果 27
A 優勢種屬的時空分佈 27
B 與其他現生樣本的分析結果比較 36
C 優勢種屬的相對豐度與水文環境的關係 40
3.1.3 浮游性有孔蟲殼體的碳、氧同位素結果 45
A 氧同位素的季節性變化 47
B 碳同位素的季節性變化 51
C 碳、氧同位素隨深度的變化 53
D 與其他現生樣本的分析結果比較 57
E 碳、氧同位素與水文環境的關係 60
3.2 浮游性有孔蟲殼體的碳、氧同位素與周遭海水的關係 67
3.2.1 海水的分析結果 67
A 水文資料 67
B 海水氧同位素結果 70
C 海水碳同位素結果 72
3.2.2 浮游性有孔蟲的δ18O與周遭海水δ18O的關係 74
3.2.3 浮游性有孔蟲的δ13C與周遭海水δ13C的關係 82
肆 結論 86
伍 參考文獻 88
中文部分 88
英文部分 90
參考文獻 References
中文部分:
王律江,1992,南海北部晚第四紀氧同位素紀錄與盆地水體流通狀況,南海晚第四紀古海洋學研究,青島海洋大學出版社,青島,第195-205頁。
王薇喬,2003,高屏峽谷與南海北部沈積物收集器的有孔蟲組合及其穩定同位素之季節性變化,國立中山大學海洋地質及化學研究所碩士論文,共98頁。
王麗文,1997,南海東北部溶解態無機碳碳同位素的變化,國立中山大學海洋地質及化學研究所碩士論文,共124頁。
林清芬,2000,南海及呂宋海峽海水氧同位素組成之研究,國立中山大學海洋地質及化學研究所碩士論文,共80頁。
施詠嚴,2005,南海時間序列測站2002-2004年間溶解態無機碳之時序變化:淨族群生產力之評估,國立中山大學海洋地質及化學研究所碩士論文,共79頁。
陳鎮東,2001,南海海洋學,渤海堂出版社,台北市,共506頁。
游智謙,2002,南海北坡晚第四紀沈積物有機碳碳同位素的變化,國立中山大學海洋地質及化學研究所碩士論文,共83頁。
翦知湣,陳民本,林慧玲,汪品先,1998,從穩定同位素與微體化石看南海南部末次冰消期古海洋學變化之階段性,中國科學 (D)輯,28(2),第118-124頁。
魏國彥,2003,小化石記錄大氣候,科學發展,369,第6-11頁。

英文部分:
Bauch, D., Erlenkeuser , H., Winckler, G., Pavlova , G., Thiede , J., 2002. Carbon isotopes and habitat of polar planktic foraminifera in the Okhotsk Sea: the ‘carbonate ion effect under natural conditions. Marine Micropaleontology 45, 83-99.
Bé, A.W.H., 1977. An ecological, zoogeographic and taxonomic review of recent planktonic foraminifera. In (Ramsay, A.T.S. ed.), Oceanic Micropaleontology, 1-100, Academic Press.
Berger, W.H., Killingley, J. S., Vincent, E., 1978. Stable isotopes in deep-sea carbonates: Box core ERDC-92, west Equatorial Pacific. Oceanologica Acta 1, 203-216.
Bemis, B. E., Spero, H. J., Bijma, J., Lea, D. W., 1998. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanography 13, 150-160.
Bemis, B. E., Spero, H. J., Lea, D. W., Bijma, J., 2000. Temperature influence on the carbon isotopic composition of Globigerina bulloides and Orbulina universa (planktonic foraminifera). Marine Micropaleontology 38, 213-228.
Brenninkmeijer, C.A.M., Kraft, P., Mook,W. G., 1983. Oxygen isotope fractionation between CO2 and H2O. Isotope Geoscience 1, 181-190.
Brenninkmeijer, C.A.M., Morrison, P. D., 1987. An automated system for isotopic equilibration of CO2 and H2O for 18O analysis of water. Chemical Geology 66, 21-26.
Bouvier-Soumagnac, Y., Duplessy, J.-C., 1985. Carbon and Oxygen isotopic composition of planktonic foraminifera from laboratory culture, plankton tows and recent sediment: Implications for the reconstruction of paleoclimatic conditions and of the global carbon cycle. Journal of Foraminiferal Research 15(4), 302– 320.
Chen, C. T. A., Wang, S. L., 1998. Influence of intermediate water in the western Okinawa trough by the outflow from the South China Sea. Journal of Geophysical Research 103, 12683-12688.
Duplessy, J.-C., Blanc, P.-L., Bé, A.W.H., 1981. Oxygen-18 enrichment of planktonic foraminifera due to gametogenic calcification below the euphotic zone. Science 213, 1247-1250.
Epstein, S., Mayeda, T., 1953. Variation of δ18O content of waters from natural sources. Geochimica et Cosmochimica Acta 4, 213-224.
Fang, G.H., Fang, W. D., Fang, Y., Wang, K., 1998. A survey of the South China Sea upper ocean circulation. Acta Oceanographica Taiwanica 37, 1-16.
Fairbanks, R.G., Wiebe, P. H., Bé, A. W. H., 1980. Vertical distribution and isotopic composition of living planktonic foraminifera in the western North Atlantic. Science 207, 61-63.
Ferronsky, V. I., Brezgunov, V. S., 1989. Stable isotopes and ocean mixing. In Handbook of Environmental Isotope Geochemistry 3, 1-26.
Gong, G. C., Liu, K. K., Liu, C. T., Pal, S. C., 1992. The Chemical hydrography of the South China Sea west of Luzon and a comparison with the west Philippine Sea. TAO 3, 587-602.
Grossman, E. L., 1982. Stable isotopic in live benthic foraminifera from the Southern California Borderland. Ph. D. dissertation, 164pp., Univ. of Southern Calif., Los Angeles.
Grothmann, A., 1996. Rezente Verbreitungsmuster valkanischer, terrigener und biogener Komponenten und stabiler Kohlenstoff- und Sauerstoff-Isotope in Sedimenten der Südchina-See. M.Sc. Thesis, Kiel University.
Haslam, D.W., 1982. China Sea Pilot. Hydrographer of the Navy, London, Vol. 2, 4th ed.
Haslam, D.W., 1987. China Sea Pilot. Hydrographer of the Navy, London, Vol. 1, 4th ed.
Hemleben, C., Spindler, M., 1983. Recent advances in research on living planktonic foraminifera. Utrecht Micropaleontological Bulletin 30, 141-170.
Hilbrecht, H., 1996. Extant planktic foraminifera and the physical environment in the Atlantic and Indian Ocean, Mitteilungen aus dem Geologischen Institut der Eidgen. Techischen Hochschule und der Universität Zürich, Neue Folge, No. 300, 93 pp., Zürich.
Hu, J., Kawamura, H., Hong, H., Qi, Y., 2000. A review on the currents in the South China Sea: seasonal circulation, South China Sea warm current and Kuroshio intrusion. Journal of Oceanography 56, 607-624.
Huang, B., Cheng, X., Jian, Z., Wang, P., 2003. Response of upper ocean structure to the initiation of the North Hemisphere glaciation in the South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 196, 305-318.
Kim, S.-T., O'Neil, J. R., 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61, 3461-3475.
Kipp, N. G., 1976. New Transfer Function for Estimating Past Sea-Surface Conditions from Sea-Bed Distribution of Planktonic Foraminiferal Assemblages in the North Atlantic. Geological Society of America 145, 3-41.
Kuroyanagi, A., Kawahata, H., 2004. Vertical distribution of living planktonic foraminifera in the seas around Japan. Marine Micropaleontology 53, 173-196.
Labeyrie, L.D., Duplessy, J.C., 1985. Changes in the oceanic 13C/12C ratio during the last 140,000 years; high-latitude surface water records. Palaeogeography, Palaeoclimatology, Palaeoecology 50, 217-240.
Lea, D. W., Martina, P. A., Pak, D. K., Spero, H. J., 2002. Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core. Quaternary Science Reviews 21, 283–293.
Levitus, S., Boyer, T.P., 1994. World Ocean Atlas 1994, 4. Temperature. NOAA, U.S. Dept. of Commer., Washington, D.C., 117pp.
Li, B.-H., Jian, Z.-M., Wang, P. X., 1997. Pulleniatina obliquiloculata as a paleoceanographic indicator in the southern Okinawa Trough during the last 20,000 years. Marine Micropaleontology 32, 59-69.
Li, B.-H., Jian, Z.-M., Li, Q.-Y., Tian, J, Wang, P. X., 2005. Paleoceanogrpahy of the South China Sea since the middle Miocene: evidnece from planktonic foraminifera. Marine Micropaleontology 54, 49-62.
Lin, H.-L., Peterson, L. C. , Overpeck, J. T., Tumbore, S. E, Murray, D. W., 1997. Late Quaternary climate change from
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code