Responsive image
博碩士論文 etd-0718106-174229 詳細資訊
Title page for etd-0718106-174229
論文名稱
Title
鎂鎳釔硼及鎂銅釹非晶質合金之玻璃形成能力與熱性質研究
Glass Forming Ability and Thermal Properties in Mg-Ni-Y-B and Mg-Cu-Nd Amorphous Alloys
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
134
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-13
繳交日期
Date of Submission
2006-07-18
關鍵字
Keywords
鎂鎳、鎂銅、熱性質、鎂、非晶質
Ni, Mg, Nd, Cu, amorphous
統計
Statistics
本論文已被瀏覽 5711 次,被下載 11
The thesis/dissertation has been browsed 5711 times, has been downloaded 11 times.
中文摘要
本實驗乃分成兩部分來進行,第一部份的主要目的只是為了更加確定添加些許的硼元素是否真的可以如鄭宇庭[14]所做的Mg65Cu25Y10合金加硼實驗一樣,使熱性質變的良好,以後更加篤定添加硼元素的用處是否有效提升。本論文以Mg65Ni25Y10合金系統為基準,有別於鄭宇庭的Mg65Cu25Y10合金系統,各別添加硼元素去取代銅元素 (1 at%、3 at%、5 at%),藉由小原子填入其自由體積(free volume)內,去提升它的堆積密度。也觀察其熱性質變化是否也跟鄭宇庭結論相吻合。

第二部份,本實驗大膽將鎂元素降至58 at%,甚至更低,而大原子釹Nd的元素向上提升至11 at%或更多,有別於大家常用的65 at %、25 at %、10 at %為主要的比例成分,來觀察其過冷液體區間
Abstract
This thesis is divided into two parts. The main purpose of the first part is only to confirm further whether adding B can really improve the glass forming ability (GFA) and thermal stability. It is recently suggested that the addition of the even smaller sized B (0.08 nm) in the Mg65Cu25Y10 alloys to a certain level can further enhance GFA and provide the chance in fabricating larger bulk amorphous billet. The current study extends the concept of adding B to the Mg65Ni25Y10 based alloy, including the replacement of Ni by 1-5 at % (1, 3, and 5 at %) using the arc melting and melt spinning methods.

The second part, this experiment drops magnesium element to 58 at% boldly, even lower, and the big element atom neodymium (Nd) improves to 11 at% or more upwards, different from everybody commonly used 65 at %, 25 at % , 10 at % as the main proportion composition , then to observe whether its supercooled liquid region
目次 Table of Contents
目錄

目錄..............……….......................….........................................................................I
表目錄................………..................….....................................................................IV
圖目錄….......……………….………………………...................................................V
Abstract..............……….......................…..................................................................X
摘要..............……….......................….....................................................................XII
第一章 前言..........................…………………………………………........................1
1-1 簡介………….....………………………..…………………....................1
1-2 非晶質鎂合金的崛起…………..……………………..……...................2
1-3 多元成分的影響..………...……………………………………………...3
1-4 研究主旨目的…...……………………………………………………….4
第二章 理論背景...................…………………………………………........................6
2-1 非晶質合金發展歷程….......…………………………….......................6
2-2 非晶質合金種類……………..………….……………….......................8
2-3 非晶質合金的製程方法.………………..……………….......................9
2-4 影響非晶質合金之形成條件因素...............….........…………………10
2-4-1 玻璃形成能力…….............................……….………………..10
2-4-2 冷卻速率…………..........................…..……………………….11
2-4-3 合金原子間的鍵結與晶體結構特性...........…….…………….12
2-4-4 共晶成分…………..........................…..……………………….12
2-5 非晶質合金的熱力學性…..………........................….....…………….12
2-5-1 非晶質之介穩態…..…………….....……………..…………….13
2-5-2 玻璃轉換溫度(Tg)...................................................................14
2-5-3 簡化玻璃轉換溫度(Trg)..............................………..………....14
2-6 非晶質合金的優異特性..........................................………..………...15
2-6-1 機械性質...............................……………………...…….....….16
2-6-2 化學性質.......….........................…………………….………...16
2-6-3 物理性質.......….........................…………………….………...17
2-7 熱力學結晶分析.............................…………………………………...17
2-7-1 恆溫分析法...........................……………………...……...…...18
2-7-2 非恆溫分析法.......….................................………….………...19
2-7-2-1 一般之非恆溫分析法.......…..................…….………...19
2-7-2-2 修正之非恆溫分析法.......…..................…….………...22
第三章 實驗步驟.............................................………………...…………………......25
3-1 薄帶製作方法..............................….......…………..………………….25
3-1-1 實驗材料配製....................................…………….…………...25
3-1-2 電弧熔煉(Arc-Melting)………………………………..……….25
3-1-3熔煉(Melt spinning)..................................………….………….26
3-2 多元合金基本分析................................…………………….………..27
3-2-1 XRD繞射分析................................….………………………...27
3-2-2 DSC熱分析………………………………………………….......27
3-2-3 SEM與EPMA定量分析………………………………...……...28
3-2-4 微硬度機分析…………………………………………...……...28
第四章 實驗結果.………………............................………………………...…….......29
4-1 試片外觀…..……….........…….....…………………….…….….........29
4-2 SEM觀察與EDS分析.....……….....……….....……….....………......30
4-3 X光繞射分析……….........…….....…………………….…….…........30
4-4 非恆溫熱力學DSC分析.....……….....……….....……….....………..31
4-5 硬度分析.....……….....……….....……….....……….....……….....…..34
第五章 分析與討論…….....…………..................……………..…………....……......37
5-1添加硼元素對合金的影響...…….....………………..….…….….........37
5-2熱力學和動力學分析...…….....………………………...…….….........38
5-2-1 Kissinger做圖分析............... .....……….....…………….…......39
5-2-2修正之非恆溫分析法................................….………….……...40
5-3鎂銅與鎂鎳系列非晶質合金比較...........................................…..…...41
5-4 Tg與Hv值的關係....................................................................…..…...43
第六章 結論……....…………………..................……………..…………....…….......44
參考文獻............................................………………………………….........…….....46
表..........................................................……………………………………………....50
圖.............................................................…………………………………….………66






表目錄

表1-1 非晶質合金之特性...........................………………...……...……..............50
表1-2 非晶質鎂基系統……………………………………………………………..51
表2-1 最初非晶質合金之系統分類表.......................…………………………….52
表2-2 多元系塊狀非晶質合金種類與發展歷程表.........…...….…...……………53
表2-3 鎂、鋯、鈀基等非晶質合金的Tg、Tm、Tl表.....................………………....54
表2-4 鎂、鋯、鈀基等非晶質合金的Tg/ Tm、Tg/ Tl、Zmax、
參考文獻 References
參考文獻

1. 吳學陞,工業材料,149 (1999), pp. 154-165.
2. A. Inoue, Mater. Sci. Eng. A, 304-306 (2001), pp. 1-10.
3. N. H. Pryds, Mater. Sci. Eng. A, 375-377 (2004), pp. 186-193.
4. A. Inoue, K. Ohtera, K. Kita and T. Masumoto, Jpn. J. Appl. Phys., 27 (1988), pp. L.2248-L2251.
5. A. Inoue and T. Masumoto, Mater. Sci. Eng. A, 173 (1993), pp. 1-8.
6. H. Horikri, A. Kato, A. Inoue and T. Masumoto, Mater. Sci. Eng. A, 179/180 (1994), pp. 702-706.
7. A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, Mater. Trans. JIM, 32 (1991), pp. 609-616.
8. A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, Mater. Trans. JIM, 33 (1992), pp. 937-945
9. A. Inoue, Acta Mater., 48 (2000), pp. 279-306.
10. A. Inoue, T. Zhang and T. Masumoto, J. Non-Cryst. Solids, 156-158 (1993), pp. 473.
11. K. Amiya and A. Inoue, Mater. Trans. JIM, 41, (2000), pp. 1460-1462.
12. E. S. Park, H. G. Kang, W. T. Kim and D. H. Kim, J. Non-Cryst. Solids, 279 (2001), pp. 154-160
13. G. Yuan, T. Zhang, A. Inoue, Mater. Trans., 41 (2003), pp. 2271-2275.
14. Y. T. Cheng, MS thesis, NSYSU, Taiwan, 2005.
15. X. K. Xi, D. Q. Zhao, M. X. Pan, W. H. Wang, Intermetallics, 13 (2005), pp. 638-641.
16. J. Kramer, Z. Phys, 106 (1937), pp. 675-701.
17. J. Kramer, Ann. Phys, 137 (1934), pp. 37-64.
18. A. Bremer, D. E. Couch and E. K. Williams, J. Res. Natl. Bur. Stand., 44 (1950), pp. 109-122.
19. P. Duwez,Trans. Am. Soc. Metals, 60 (1967), pp. 607-633.
20. P. Duwez and S.C.H. Lin, J. Appl. Physi., 38 (1967), pp. 4096-4097.
21. H. S. Chen and C. E. Miller, Rev. Sci. Instrum, 41 (1970), pp. 1237-1238.
22. H. W. Kui, A. L. Greer and D. Turnbull, Appl. Phys. Lett., 45 (1984), pp. 615-616.
23. R. W. Cahn, P. Hassen and E. J. Kramer (ed), Materials Science and Technology, Vol.9, New York, USA, 1991
24. A. Inoue, Mater. Trans. JIM, 36 (1995), pp. 866-875.
25. A. Inoue, Mater. Sci. Forum, 179-181 (1995), pp. 691-700.
26. A. Inoue, A. Takeuchi and T. Zhang, Metall. Mater. Trans., A29 (1998), pp. 1779-1785.
27. H. S. Chen, H. J. Leamy and C. E. Miller, Annu. Rev. Mater. Sci., 10 (1980), pp. 363-391.
28. K. L. Chopra, Thin Film Phenomena, McGraw-Hill, 1969.
29. W. Paul and R. J. Temkin, Adv. Phys., (1973), pp. 531-580.
30. R. Liu, J. Li, K. Dong, C. Zheng and H. Liu, Mater. Sci. Eng., B94 (2002), pp. 141-148.
31. P. S. Grant, Prog. Mater. Sci., 39 (1995), pp. 497-545.
32. C. R. M. Afonso, C. Bolfarini, C. S. Kiminami, N. D. Bassim, M. J. Kaufman, M. F. Amateau, T. J. Eden and J. M. Galbraith, J. Non-Cryst. Solids, 284 (2001), pp. 134-138.
33. A. Inoue, Mater. Sci. Eng., A226-228 (1997), pp. 357-363
34. A. Inoue, T. Zhang and A. Takeuchi, Mater. Sci. Forum., 269-272 (1998), pp. 855-864.
35. A. Inoue, A. Takeuchi and T. Zhang, Metall. Mater. Trans., A29 (1998), pp. 1779-1793.
36. R. E. Reed-Hill, Physical Metallurgy Principles, PWS, Boston, USA, 1994.
37. A. Greer, Nature, 366, 25 (1993), pp. 303-304.
38. Z. P. Lu and C. T. Liu, Acta Mater., 50 (2002), pp. 3501-3512.
39. M. Lasocka, Mater. Sci. Eng., 23 (1976), pp. 173-177.
40. Z. P. Lu, H. Tan, Y. Li and S. C. Ng, Scripta Mater., 42 (2000), pp. 667-673.
41. S. R. Elliot, Physics of Amorphous Materials, USA, 1990
42. H. S. Chen, Rep. Prog. Phys., 43 (1980), pp. 353-432.
43. 戴道生、韓汝琪,非晶態高等物理,電子業出版社,China,1984
44. M. Seidel, J. Eckert, E. Zueco-Rodrigo, L. Schultz, J. Non-Cryst. Solids, 205-207 (1996), pp. 514-517.
45. M. H. Cohen, Nature, 203 (1964), pp. 964-965.
46. D. Turbbull and J. C. Fisher, J. Chem. Phys., 17 (1949), pp. 71-73.
47. T. A. Waniuk, J. Schroers and W. L. Johnson, Appl. Phys. Lett., 78 (2001), pp. 1213-1215.
48. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, Acta Mater., 49 (2001), pp. 2645-2652.
49. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, J. Mater. Res., 16 (2001), pp. 2836-2844.
50. T. D. Shen and R. B. Schwarz, Appl. Phys. Lett., 75 (1999), pp. 49-51.
51. B. S. Murty and K. Hono, Mater. Trans., JIM, 41 (2000), pp. 1538-1544.
52. Z. P. Lu and C. T. Liu, Acta Mater., 50 (2002), pp. 3501-3512.
53. A. Inoue, K. Nakazato, Y. Kawamura, A. P. Tsai and T. Masumoto, Mater. Trans., JIM, 35 (1994), pp. 95-102.
54. 鄭振東,非晶質金屬漫談,建宏出版社,Taipei,Taiwan,1990.
55. W. A. Johnson and K. F. Mehl, Trans. Am. Inst. Mining Met. Eng., 135 (1981) p. 315.
56. M. Avrami, J. Chem. Phys. 7 (1939) pp. 1103-1112.
57. M. Avrami, J. Chem. Phys. 8 (1940) pp. 212-224.
58. M. Avrami, J. Chem. Phys. 9 (1941) pp. 177-184.
59. D. W. Henderson, J. Non-Cryst. Solids, 30 (1979) pp. 301-315.
60. J. Vazquez, R. A. Ligero, P. Villares and R. Jimenez-Garay, Thermochim. Acta, 157 (1990) pp. 181-191.
61. H. Yinnon and D. R. Uhlmann, J. Non-Cryst. Solids, 54 (1983) pp. 253-275.
62. K. Matusita, T. Komatsu and R. Yokota, J. Mater. Sci., 19 (1984) pp. 291-296.
63. Chung-Cherng Lin and Pouyan Shen, J. Solid State Chem., 112 (1994) pp. 387-391.
64. B. Yang, M. Morrison, P.K. Liaw, C.T. Liu, R. A. Buchanan, and T.G. Nieh, J. Mater. Res., 21 (2006) pp. 915-922.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.14.132.164
論文開放下載的時間是 校外不公開

Your IP address is 3.14.132.164
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code