Responsive image
博碩士論文 etd-0718107-164254 詳細資訊
Title page for etd-0718107-164254
論文名稱
Title
影響白脊藤壺(Balanus albicostatus)成長與附著之因子探討
Factors affecting the growth and settlement of barnacle Balanus albicostatus
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
131
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-15
繳交日期
Date of Submission
2007-07-18
關鍵字
Keywords
微生物膜、白脊藤壺、污損生物
fouling organisms, Balanus albicostatus, biofilm
統計
Statistics
本論文已被瀏覽 5699 次,被下載 0
The thesis/dissertation has been browsed 5699 times, has been downloaded 0 times.
中文摘要
摘要

白脊藤壺Balanus albicostatus為高雄港內污損生物的優勢種類。由白脊藤壺的族群動態之研究結果發現,在高雄港,由北往南排列的五個測站中,非因距離遠近或相關性之強弱,而可將高雄港內的白脊藤壺族群區分為中正橋測站(愛河河口區)、內港區與港口區三大族群,其中中正橋測站的族群變動最大,平均存活率為53.8±21.7%,港口區的族群較穩定,其平均存活率為59.5±4.9%~62.5±8.1%。由第一年清除藤壺族群後與經過一年再補充之族群組成比較,發現白脊藤壺族群在一年內達動態平衡。比較兩年的藤壺族群存活率與個體大小組成,發現相同季節內的測站有明顯的差異,由對高雄港區白脊藤壺族群採樣調查發現,卵巢發育成熟之最小生殖體型為殼長3.6mm。由實驗水槽中對於藤壺成長實驗可推論生長至最小生殖個體殖體型約需20天左右。港區實驗水槽所進行之附著後藤壺成長實驗,其中包括過濾海水(80µm)及不過濾組;清除其他附著生物及不清除組,得知其附著族群的成長與死亡,不會受到藤壺幼體補充群及其他附著生物補充量之影響。綜合以上資料意謂高雄港區內的白脊藤壺族群可能於三個月內即可趨向穩定的動態平衡。

為瞭解其生活史與環境之間的關係,本研究將實驗室中培養白脊藤壺幼體培養在不同的溫度(15、20、25、30、35℃)與鹽度(18、23、28、33psu)實驗組,以瞭解環境因子對卵孵化與幼體發育之影響。結果發現幼體在高溫高鹽(35℃,33psu)條件下,於孵化後5天即可變態為腺介幼體,低溫低鹽(15℃,22psu)下則延遲至19天。腺介幼體於高鹽條件下(33psu)之附著率68%最佳。由白脊藤壺幼體對溫鹽條件所反應之成長與附著結果,可知白脊藤壺屬於高溫鹽的物種,而白脊藤壺由卵孵化至附著後達生殖體型,應可於最短約26天內完成。

為了探討微生物膜對於藤壺幼體附著影響,將飼育於實驗室調控環境下之腺介幼體,置於未過濾海水以及80、20、1µm的過濾處理下所產生的微生物膜實驗盒中,結果發現:微生物膜成長5天時,在過濾海水所產生的微生物膜上的腺介幼體附著率均高於未過濾海水處理之微生物膜以及酒精塗抹對照組,但是當微生物膜成長12天後,除了1µm微生物膜附著板上有大量幼體附著,其他處理組的附著個體數卻減少。微生物膜成長至13天後,未過濾處理組有75%微生物膜面積剝落,此時在未過濾組與1µm過濾處理組的實驗板上的腺介幼體附著量相近,且較其他處理組多,不同微生物膜對於腺介幼體的附著有明顯差異,顯示腺介幼體的附著會受到微生物膜影響,而不同處理所產生的微生物膜內造成組成變化應為導致幼體附著量差異的主要原因,而非受到微生物膜生物量影響。

本研究藉由高雄港的白脊藤壺族群研究,得知港內不同區域的族群分佈有時空上的變動與測站之間的差異,族群量雖有變動,但可在3個月內維持族群的動態平衡,進一步由溫鹽對幼體附著的影響實驗發現,幼體附著初期的環境條件,為影響藤壺族群的重要限制因子。而藉實驗室所培育之腺介幼體,與微生物膜之培養條件及成長時間加以探討幼體附著可推論:微生物膜內生物種類的組成與隨時間成長而改變的變化,會影響幼體的附著初期補充成敗,因而成為進一步影響白脊藤壺族群在港區不同環境中的族群變動的關鍵因素之一。
Abstract
Abstract

The Balance Balanus albicostatus is the dominant species of fouling organism in Kaohsiung Port. In different harbor district environments In Kaohsiung Port, one can discriminate the population of B. albicostatus into three different groups:the estuary area of Love River, the outer harbor area, and the harbor area. The variation of estuary area’s (Jhongjheng Bridge Station on Love River) population is the highest with the averaged survival rate of 53.8±21.7%. The population in the harbor area (The First Harbor Mouth station) is more stable with the averaged survival rate of 62.5±8.1%. The composition of population in the eliminated area in all stations after one year is similar to the previous one. It is suggested that barnacle population in Kaohsiung port can recover from environmental disturbance throughout larval recruitment within a year. Based on the results from the growth experiment of the settled barnacle’s larvae, it was indicated that the growth and survival rate of the settled larvae was least affected by the recruitment of any kinds of settled larvae including barnacle itself.

To understand the influence of environmental factors on the hatching of egg and development of larvae, we cultivated the larvae of B. albicostatus under the control of temperatures and salinities in the laboratory. The hatching rate of egg and times required for larvae to metamorphosis at each stage is the shortest under the condition of high temperature and high salinity. The larvae can metamorphose into cyprid in five days after hatching at the high temperature (35℃), while it is prolonged to 19 days after hatching under the low temperature (15℃) and low salinity (22 psu). The settlement rate of cyprids is better under high salinity (33 psu).

To understand the effects of biofilm on settlement of cyprids, the biofilms are cultured under the conditions of the non-filtered, 80μm, 20μm, and 1μm filtered seawater. When the biofilms have grown for 5 days, the settlement rate of cyprids on the biofilm cultured by the filtered seawater is higher than those on the non-filtered biofilms and alcohol-sterilized ones. At the day 12, the 1μm filtered treatments had a greatest quantity of settled larvae while the number of settled cyprids in the other treatments decreased. The number of settled cyprids on panels with biofilms cultured for 15 days in non-filtered seawater and the one with biofilms fallen off for more than 75% of the total area did not significantly differ from the one with biofilms cultured in the seawater filtered with the 1μm mesh. This showed that biofilms cultured under different filtered conditions affect the settlement of cyprids over time.

It is concluded that the population of barnacle Balanus albicostatus, based on survival rate and growth, can be grouped into three different groups in the Kaohsiung Port. From the laboratory experiments, it is showed that the type of biofilm and the aging processes over time can affect the settlements of cyprids. It therefore suggested that the larval recruitments of the barnacle B. albicostatus can be affected by the types of biofilm on the different substrates, and consequently the larval recruitments in the different environmental conditions in Kaohsiung Port.
目次 Table of Contents
目錄

中文摘要........................................................................................ I
英文摘要........................................................................................ III
目錄................................................................................................ V
表目錄............................................................................................ VI
圖目錄............................................................................................ VII
壹、前言........................................................................................ 1
污損生物研究回顧................................................................ 1
微生物膜與藤壺於污損生物群聚之關係............................ 3
藤壺生活史............................................................................ 5
貳、材料與方法............................................................................ 8
一、高雄港白脊藤壺族群動態............................................ 8
二、溫鹽條件對卵孵化、幼體變態與附著之影響............ 15
三、微生物膜對腺介幼體附著之影響................................ 18
參、結果........................................................................................ 22
一、高雄港白脊藤壺族群動態............................................ 22
二、溫鹽條件對卵孵化、幼體變態與附著之影響............ 30
三、微生物膜對腺介幼體之附著影響................................ 34
肆、討論........................................................................................ 38
一、高雄港白脊藤壺族群動態............................................ 38
二、溫鹽條件對卵孵化、幼體變態與附著之影響............ 47
三、微生物膜對腺介幼體附著之影響................................ 51
伍、結論........................................................................................ 55
陸、參考文獻................................................................................ 56
附錄、個人資料暨研究成果目錄................................................ 119
參考文獻 References
加戶隆介,1991。フジツボ。海洋生物の付著機構。水產無脊椎動物研究所編。浘原 武 監修。恆星社厚生閣。東京, 85-96。
任先秋、劉瑞玉,1978。中國近海的蔓足類I.藤壺屬。海洋科學集刊。13:119-189。
吳松霖,1999。華美盤管蟲Hydrorides elegans在高雄港內附苗的時空變化。國立中山大學海洋生物研究所碩士論文。
吳清熊,1996。海洋箱網網片附著物形成之抑制方法研究。八十五年度台灣省農業廳漁業局試驗研究報告。
梁明煌,1981。布袋養殖牡蠣之成長與著苗研究。國立台灣大學動物研究所碩士論文。
高雄市工務局,2006。高雄市河川(後勁溪、愛河、前鎮河、五號船渠)生態調查及評析。
段育豪,2000。兩種脂肪酸對定置網上附著生物的影響。國立海洋大學海洋生物研究所碩士論文。
莊士巧,2002。高雄港流場與海水交換之數值模擬研究。國立中山大學海洋資源研究所碩士論文。
許慧文,1989。澎湖地區牡蠣外殼附著動物之研究。國立台灣大學漁業科學研究所碩士論文。
程一駿、陳天任,1993。漁船上大型附著無脊椎動物之群落結構的初步研究。台灣水產學會刊。20(3):269-271。
黃瑞傑,1983。布袋灣附著性無脊椎動物之附著研究。國立中山大學海洋生物研究所碩士論文。
孫佩君,1999,高雄港港池流場的現場調查與數值模擬。國立中山大學海洋資源所碩士論文。
陳一鳴、陳秉弘、鄭敬善、蘇茂森,1998。箱網上附著生物之研究。漁業推廣工作專刊。16:37-50。
陳一鳴、陳秉弘,1999。不同網孔箱網網片上之附著生物。漁業推廣工作專刊。17:57-62。
陳一鳴、陳秉弘,2000。PIPEX555系統膜處理劑對海水性附著生物抑制之效應測試報告不同。國立中山大學海洋資源學系。
陳秉弘,1999。箱網上附著生物研究。國立中山大學海洋資源研究所碩士論文。
陳渝,1999。三種抗污損劑對定置網上大型附著生物群落消長之影響。國立海洋大學海洋生物研究所碩士論文。
蔣文棋,2000。導電塗料防止海生物附著之研究。國立海洋大學材料工程研究所碩士論文。
鄭火元,1986。定置魚網用防污劑試驗研究-I。行政院農業委員會。研究報告500。
鄭火元、蔡光照,1987。定置魚網用防污劑試驗研究-II。行政院農業委員會。研究報告501。
魏翠萍,1998。定置網上大型污損生物群落之消長及抗污劑(TBT)對污損生物抑制。國立海洋大學海洋生物研究所碩士論文。
劉秀美,1996。定置網上附著生物之形成機制及防治的探討。八十五年農業委員會海洋漁業暨栽培漁業計畫執行成果發表會。[85科技-1.13-漁-04(24)]:21-35。
盧陽明,1996。防海生物吸附之研究與對策。海下技術季刊。6(2):31-40。
Barnes, H., 1972. Fundamental aspects of the problem of antifouling. In Proceedings of the 3rd International Congress on Marine Corrosion and Fouling, pp. 640-648.
Barnes, H., Barnes, M., 1967. The effect on starvation and feeding on the time of production of egg masses in the boreo-arctic cirripede Balanus balanoides (L.). J. Exp. Mar. Biol. Ecol., 1:1–6
Bastida, R., Capezzani, D.A., Torti, M.R., 1971. Fouling organisms in the port of Mar del Plata (Argentine). I: Siphonaria lessoni (Blainville, 1824). Mar. Biol., 10: 297-307.
Becker, K., 1995. A study of the natural antifouling mechanism of the green mussel Perna viridis L. (Mytilidae). Biofouling, 8: 233-242
Berk, S.G., Mitchell, R., Bobbie, R.J., Nickels, J.S., White, D.C., 2001. Microfouling on metal surfaces exposed to seawater. Int. Biodeterior. Biodegrad. 48: 167–175.
Berntsson, K.M., Jonsson, P.R., Lajhall, M., Gatenholm, P., 2000. Analysis of behavioral rejection of micro-textured surfaces and implications for recruitment by the barnacle Balanus improvisus. J. Exp. Mar. Biol. Ecol., 251: 59-83
Blower, S., Roughgarend, J., 1987, Population dynamics and parasitic castration: a mathematical model. Am. nat., 129(5): 730-754.
Brancato, M.S., Woollacott, R.M., 1982. Effect of microbial films on settlement of bryozoan larvae (Bugula simplex, B. stolonifera and B. Turrita). Mar. Biol., 71:51-56.
Branscomb, E.S., 1976. Procimate causes of mortality determining the distribution and abundance of the barnacle Balanus improvisus Darwin in Chesapeake Bay. Chesap. sci., 17: 281-288.
Brown, C.J., 2005. Epifaunal colonization of the Loch Linnhe artificial reef: Influence of substratum on epifaunal assemblage structure. Biofouling, 21: 73-85.
Brown, S.K., Roughgarden, J., 1985. Growth, morphology, and laboratory culture of larvae of Balanus glandula (Cirripedia: Thoracica). J. Crustacean Biol., 5: 574–590.
Chalmer, P.N., 1982. Settlement patterns of species in a marine fouling community and some mechanisms of succession. J. Exp. Mar. Biol. Ecol., 58: 73-85.
Clements, F.E., 1936. Nature and structure of the climax. J. Ecol., 24:252-284.
Connell, J.H., 1970. A predator-prey system in the marine intertidal region. I. Balanus glandula and several predatory species of Thais. Ecol. monogr., 40: 49-78.
Crisp, D.J., 1954. The breeding of Balanus porcatus (Da Costa) in the Irish Sea. J. Mar. Biol. Ass. U.K., 33: 473-496.
Crisp, D.J., 1955. The behaviour of barnacle cyprids in relation to water movement over a surface. J. Exp. Biol., 32: 569-590.
Crisp, D.J., 1983. Extending Darwin investigations on the barnacle life-history. Biol. j. Linn. Soc., 20(1) : 73-83.
Dean, T.A., 1981. Structural aspects of sessile invertebrates as organizing forces in an estuarine fouling community. J. Exp. Mar. Biol. Ecol., 53: 163-180.
Desai, D.V., Anil, A.C., 2005. Recruitment of the barnacle Balanus amphitrite in a tropical estuary: implications of environmental perturbation, reproduction and larval ecology. J. Mar. Biol. Ass. U.K., 85: 909-920.
Dineen, J.F., Hines, A.H., 1992. Interactive effects of salinity and adult extract upon settlement of the estuarine barnacle Balanus improvisus (Darwin, 1854). J. Exp. Mar. Biol. Ecol., 156: 239-252.
Dineen, J.F., Hines, A.H., 1994a. Effects of salinity and adult extract on settlement of the oligohaline barnacle Balanus subalbidus. Mar. Biol., 119: 423-430.
Dineen, J.F., Hines, A.H., 1994b. Larval settlement of the polyhaline barnacle Balanus eburneus (Gould) - cue interactions and comparisons with 2 estuarine congeners. J. Exp. Mar. Biol. Ecol., 179: 223-234.
Dong, Y., Chen, Y., Cai, R., 1980. Preliminary study on the Chinese cirripedian fauna. Acta Oceanol. Sin. 2: 124-131. (in Chinese; English abstract)
Field, B., 1982. Structural analysis of fouling community development in the damariscotta river estuary, marine. J. Exp. Mar. Biol. Ecol., 57: 25-33.
Groom, T. T., 1894. On the early development of cirripedia. Philos. Trans. R. Soc. Lond., Ser. B., 185: 119-232.
Grosberg, R.K., 1982. Inter-tidal zonation of barnacles - the influence of planktonic zonation of larvae on vertical-distribution of adults. Ecology, 63: 894-899.
Hansson, L.J., Hudson, I.R., Seddon, R.J., 2003. Massive recruitment of the barnacle Semibalanus balanoides in the Clyde Sea (Scotland, UK) in the spring of 2000. J. Mar. Biol. Assoc. U. K. 83: 923-924.
Head, R.M., Overbeke, K., Klijnstra, J., 2003. The effect of gregariousness in cyprid settlement assays. Biofouling, 19: 269-278.
Henrikson, A.A., Pawlik, J.P., 1995. A new antifouling assay method: results from field experiments using extracts of four marine organisms. J. Exp. Mar. Biol. Ecol., 194: 157-165.
Hiro, F. 1938. On the Japanese forms of Balanus amphitrite Darwin. Zool. Mag. (Japan), 50:299-313
Hiro, F., 1939. Studies on the cirripedian fauna of Japan. IV. Cirripeds of Formosa (Taiwan), with some geographical and ecological remarks on the littoral forms. Memoirs of the College of Science, Series B, Vol. 15, No. 2., Kyoto, Japan: Kyoto Imperial University Press. pp. 245-284.
Holmstrom, C., Kjelleberg, S., 1994. The effect of external biological factors on settlement of marine invertebrates and new antifouling technologies. Biofouling, 8:147–160.
Huguenin, J.E., Ansuini, F.J., 1978. A review of the technology and economics of marine fish cage system. Aquaculture, 15:151-170.
Jeffery, C.J., 2000. Settlement in different-sized patches by the gregarious intertidal barnacle Chamaesipho tasmanica Foster and Anderson in New South Wales. J. Exp. Mar. Biol. Ecol., 252: 15-26.
Jeffery, C.J., 2002. New settlers and recruits do not enhance settlement of a gregarious intertidal barnacle in New South Walese. J. Exp. Mar. Biol. Ecol., 275: 131- 146.
Jeffery, C.J., Underwood, A.J., 2001. Longevity determines sizes of an adult intertidal barnacle. J. Exp. Mar. Biol. Ecol., 256:85–97.
Judge, M.L., Craig, S.F., 1997. Positive flow dependence in the intial colonization of a fouling community: results from in situ water current manipulations. J. Exp. Mar. Biol. Ecol., 210: 209-222.
Kamino, K., Inoue, K., Maruyama, T., Takamatsu, N. Harayama, S., Shizuri, Y., 2000. Barnacle cement proteins - importance of disulfide bonds in their insolubility. J. Biol. Chem., 275: 27360- 27365
Kirchman, D., Graham, S., Reish, D., Mitchell, R., 1982. Bacteria induce settlement and metamorphosis of Janua (Dexiospira) brasiliensis Grube (Polychaeta: Spirorbidae). J. Exp. Mar. Biol. Ecol., 75: 191-215.
Landau, M., D’Agostino, A., 1977. Enhancement of laboratory cultures of the barnacle Balanus eburneus using antibiotics. Crustaceana, 33: 223-225.
Landless, P.J., 1985. Aeration in floating cages. Fish Farmer, 8(6): 12-14.
Lee, C., Kim, C.H., 1991. Larval development of Balanus albicostatus Pilsbry (Cirripedia, Thoracica) reared in the laboratory. J. Exp. Mar. Biol. Ecol., 157: 231-244.
Lee, C.E., Strathmann, R.R. 1998. Scaling of gelatinous clutches: effects of siblings' competition for oxygen on clutch size and parental investment per offspring. Am. Nat., 151: 293-310.
Lindquist, N., 2002. Chemical defense of early life stages of benthic marine invertebrates. J. Chem. Ecol., 28: 1987-2000.
Loland, G., 1993. Current forces on, and water flow through and around, floating fish farm. Aquac. Int., 1:72-89.
Lovegrove, T., 1979. Control of fouling in farm cages. Fish Farm. Int., 6(1):33-37.
Maki, J.S., Ding, l., Stokes, j., 2000. Substratum bacterial interactions and larval attachment: films and exopolysaccharides of Halomonas marina and their effect on barnacle cyprid larvae, Balanus amphitrite Darwin. Biofouling, 16: 159-170.
Martin, J. W., Davis, G. E., 2001. An updated classification of the Recent Crustacea. Natural History Museum of Los Angeles County, Science Series, 39: 1-124.
Michael, T., Smith, C.M., 1995. Lectins probe molecular films in biofouling: characterization of early films on non-living and living surfaces. Mar. Ecol. Prog. Ser., 119: 229-236.
Moore, H.B., 1934. The biology of Balanus balanoides I. Growth rate and its relation to size, season and tide level. J. Mar. Biol. Ass. U.K., 19: 851–868.
Moore, H.B., 1935. The biology of Balanus balanoides IV. Relation to environmental factors. J. Mar. Biol. Ass. U.K., 20: 279–307.
Murina, G.V., Grintsov, V., Solonchenko, A., 1995. Stylochus tauricus, a predator of the barnacle Balanus improvisus in the Black Sea. Hydrobiologia, 305: 101-104.
Nakamura, K., 1997. Growth and shell strain of a barnacle Balanus albicostatus population in an aquarium. Fish. Sci., 63: 22-28.
Naldrett, M.J., Kaplan, D.L., 1997. Characterization of barnacle (Balanus eburneus and B. cenatus) adhesive proteins. Mar. Biol. 127: 629-635.
Neumann, R., 1979. Bacterial induction of settlement and metamorphosis in the planula larvae of Cassiopea andromeda (Cnidaria: Scyphozoa, Rhizostomeae). Mar. Ecol. Prog. Ser., 1: 21-28.
Newman, W.A., 1965. Prospectus on larval cirriped setation formulae. Crustaceana, 9: 51–56.
Newman, W. A., Ross, A., 2001, Prospectus on larval cirriped setation formulae, revisited. J. Crustacean. Biol., 21:56-77.
Noda, T., Fukushima, K., Mori, T., 1998. Daily settlement variability of the barnacle Semibalanus cariosus: importance of physical factors and density-dependent processes. Mar. Ecol. Progr. Ser., 169: 289-293.
O'Connor, N.J., Richardson, D.L., 1998. Attachment of barnacle (Balanus amphitrite Darwin) larvae: responses to bacterial films and extracellular materials. J. Exp. Mar. Biol. Ecol., 226: 115-129.
Olivier, F., Tremblay, R., Bourget, E., Rittschof, D., 2000. Barnacle settlement - field experiments on the influence of larval supply, tidal level, biofilm quality and age on Balanus amphitrite cyprids. Mar. Ecol. Prog. Ser., 199: 185-204
Orlov, D.V., 1996. Thr role of larval setting behaviour in determination of the specific habitat of the hydrozoan Dynamena pumila (L.) Larval settlement in Dynamena pumila (L.). J. Exp. Mar. Biol. Ecol., 208: 73-85.
Patel, B., Crisp, D.J., 1961. Relation between breeding and moulting cycles in cirripedes. Crustaceana, 2: 89-107.
Petraitis, P. S., Rhile, E. C., Dudgeon, S., 2003. Survivorship of juvenile barncles and mussels: spatial dependence and the origin of alternaive communities. J. Exp. Mar. Biol. Ecol., 293: 217–236.
Pilsbry, H. A., 1916. The sessile barnacle (Cirripedia) contained in the collection of the U.S. National Museum; including a monograph of the American species. Smiths. Inst. U.S. Nat. Mus. Bull. 1-366.
Qian, P.Y., Thiyagarajan, T., Lau, S.C.K., Cheung, S.C.K., 2003. Relationship between bacterial community profile in biofilm and attachment of the acorn barnacle Balanus amphitrite. Aquat. Microb. Ecol., 33: 225-237.
Raghukumar, S., Anil, A.C., Khandeparker, L., Patil, J.S., 2000. Thraustochytrid protists as a component of marine microbial films. Mar. Biol., 136: 603–609.
Raimondi, P. T., 1988. Settlement cues and determination of the vertical limit of an intertidal barnacle. Ecology, 69: 400-407.
Scheer, B. T., 1945. The development of marine fouling communities. Biol. Bull., 89:103-112.
Simpson, E. P., Hurlbert, S. H., 1998. Salinity effects on the growth, mortality and shell strength of Balanus amphitrite from the Salton Sea, California. Hydrobiologia, 381:179-190.
Smith, F. G. W., 1946. Effect of water currents upon the attachment and growth of barnacles. Biol. Bull., 90: 51-70.
Strathmann, R., Strathmann, M., 1995. Oxygen supply and limits on aggregation of embryos. J. Mar. Biol. Ass. U. K., 75: 413-428.
Tanaka, M., Nandakumar, K., 1994. Measurement of the degree of intransitivity in a community of sessile organisms. J. Exp. Mar. Biol. Ecol., 182: 85-95.
Tegtmeyer, K., Rittschof, D., 1988. Synthetic peptide analogs to barnacle settlement pheromone. Peptides, 9: 1403-1406.
Thiyagarajan, V., Harder, T., Qian, P.Y., 2003. Combined effects of temperature and salinity on larval development and attachment of the subtidal barnacle Balanus trigonus Darwin. J. Exp. Mar. Biol. Ecol., 287: 223–236.
Toonen, R.J., Pawlik, J.R., 1996. Settlement of the tube worm Hydroides dianthus (Polychaeta: Serpulidae): cues for gregarious settlement. Mar. Biol., 126: 725-733.
Utionmi, N. E., 1967. Comments on some new and already known cirripeds with emended taxa with special reference to the parietal structure. Publ. Seto. Mar. boil. Lab., 15:199-237.
Vargas, C. A., Narvaes, D. A., Pinones. A., Navarrete, S. A., Lagos, N. A., 2006. River plume dynamic influences transport of barnacle larvae in the inner shelf off central Chile. J. Mar. Biol. Ass. U.K., 86: 1057-1065.
Walker, G., 1981. The adhesion of barnacles. J. Adhesion., 12: 51-58.
Walker, G., Lee, V.E., 1976. Surface structures and sense organs of the cypris larva of Balanus balanoides as seen by scanning and transmission electron microscopy. J. Zool., 178: 161-172.
Walker, G., Yule, A.B., Nott, J.A., 1987. Structure and function in balanomorpha larva. in Crustacean Issuse 5. Barnacle Biology (A.J. Southward ed.) A.A. Balkema, 307-328.
Wang, M.C., Hsieh, K.Y., Wang, M.C., 1993. The inner flow velocity and volume of netting cage. J. Fish. Soc. Taiwan, 20(2):83-90.
Wu, R. S. S., Levings, C. D., 1979. Energy flow and population dynamics of the barnacle Balanus glandula. Mar. Biol., 54: 83-89.
Yule, A.B., Walker, G., 1984. The temporary adhesion of barnacle cyprids: effects of some differing surface characteristics. J. Mar. Biol. Ass. U.K., 64: 429-439.
Yule, A.B., Walker, G., 1985. Settlement of Balanus balanoides: The effect of cyprid antennular secretion. J. Mar. Biol. Ass. U.K., 65: 707-712.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.219.189.247
論文開放下載的時間是 校外不公開

Your IP address is 18.219.189.247
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code