Responsive image
博碩士論文 etd-0718111-162639 詳細資訊
Title page for etd-0718111-162639
論文名稱
Title
新式可重組光信號塞取多功器系統之研究探討
Demonstration of a Novel Reconfigurable Optical Add-Drop Multiplexer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
56
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-05-31
繳交日期
Date of Submission
2011-07-18
關鍵字
Keywords
自動交換光網路、下世代網路、可重組態光信號塞取多工器、通用多重通訊協定標籤交換技術、高密度分波多工
Generalized Multi- Protocol Label Switching, Next generation networking, Automatically Switched Optical Network, Reconfigurable optical add-drop multiplexer, Dense wavelength-division multiplex
統計
Statistics
本論文已被瀏覽 5639 次,被下載 0
The thesis/dissertation has been browsed 5639 times, has been downloaded 0 times.
中文摘要
隨著下世代網路(Next generation networking, NGN)所發展出通用多重通訊協定標籤交換技術(Generalized Multi- Protocol Label Switching, GMPLS)中所需之自動交換光網路系統(Automatically Switched Optical Network, ASON),可重組態光信號塞取多工器(Reconfigurable optical add-drop multiplexer, ROADM)對ASON系統來說是一個不可缺少的設備,且高密度分波多工系統(Dense wavelength-division multiplex, DWDM)的信號在網路傳輸的管理下,其可協助網路管理員動態的管理客戶需求及所要的服務品質(Quality of Service, QoS),並增加現有光纖線路的容量、減少或免除架設額外光纖線路的需要。本論文研究了一種新的ROADM以陣列波導光柵(Array waveguide grating, AWG)和布雷格光纖光柵(fiber Bragg grating, FBG)為基礎架構,克服可重組態光信號塞取多工器無法處理當輸入之光波長訊號多於陣列波導光柵之波長通道數的問題。許多類型的ROADMs已提出並透過不同的光學儀器實現,其中混合光纖光柵和光循環器為基礎架設的系統最具吸引力,因為它具有低串擾和不隨偏振擾動的特性。由於此架構使用了許多循環器與多工-解多功器,所以仍受到許\多組件數量和高插入損耗。在此碩士論文中,我們著重研發出一種新的ROADM並評估其系統串擾的表現,結果證實所提出的ROADM可擴大波長信號數量的優點,使系統配置更加靈活。
Abstract
In response to the development of a next-generation networking (NGN) generalized multi-protocol label switching (GMPLS) technology is required for automatically switched optical network (ASON). Reconfigurable optical add-drop multiplexer (ROADM) is an indispensable device for the ASON, and the dense wavelength division multiplexed (DWDM) signals can be transmitted through the network under the management of the network administrator to configure dynamic customer needs and the desired quality of service (QoS). The ROADM can also increase the efficiency of utilizing the existing capacity of the optical fiber lines and can reduce or waive to set up additional optical fiber lines. This thesis studies a novel ROADM based on the arrayed waveguide grating (AWG) and the fiber Bragg grating (FBG) to overcome that the current ROADM cannot process that the input signal channels is greater than the wavelengths channels of AWG.
Many types of ROADMs have been proposed and realized through different optical devices. Among these, hybrid optical circulator and FBG based ROADM is more attractive because of its low crosstalk and polarization insensitivity. However, it still suffers from many component counts and high insertion losses due to the use of many circulators and a multiplexer-demultiplexer pair. In this master thesis, we focus on demonstrating a novel ROADM and evaluating its crosstalk performance. It is found that the proposed ROADM has the advantage on extending the number of wavelength signal to make the system configurable and flexible.
目次 Table of Contents
致謝 I
中文摘要 II
Abstract III
Contents V

1 Introduction 1
1.1 Background of Next-Generation Optical Internet 1
1.2 The GMPLS Paradigm 4
1.3 Motivation of this Thesis 6
1.4 Structure of this Thesis 7
References 9

2 Overview of OADM system 11
2.1 Introduction 11
2.2 Components 11
2.2.1 Arrayed Waveguide Grating 11
2.2.2 Fiber Bragg Grating 13
2.2.3 Optical Circulator. 16
2.3 Technologies of OADM system 17
2.4 Function of the proposed ROADM 27
References 30

3 Experimental Study of OADM 33
3.1 Introduction 33
3.2 Experimental Setup 33
3.2.1 Static set up 34
3.2.2 Dynamic set up 37
3.3 Experimental Results and Discussions 38
3.3.1 Homowavelength crosstalk 39
3.3.2 Static Performance 41
3.3.3 Dynamic performance  43
3.4 Summary 45

4 Conclusion 46

Acronyms VII
參考文獻 References
[1] Kuznetsov, M; Froberg, NM; Henion, SR, et al. “A next-generation optical regional access network,” IEEE COMMUNICATIONS MAGAZINE, Vol. 38, No. 1, pp. 66-72 , JAN. 2000.
[2] Kazovsky, LG; Shaw, WT; Gutierrez, D, et al. “Next-generation optical access networks,” JOURNAL OF LIGHTWAVE TECHNOLOGY, Vol. 25, No. 11, pp. 3428-3442, 2007.
[3] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley & Sons Inc., 1991.
[4] D. Katz, K. Kompella, and D. Yeung. “Traffic engineering (TE) extensions to OSPF version2,” IETF RFC 3630, SEPT. 2003.
[5] E. Mannie, “Generalized multi-protocol label switching (GMPLS) architecture,” IETF RFC 3945, OCT. 2004.
[6] Sabella, R; Settembre, M; Oriolo, G, et al. “A multilayer solution for path provisioning in new-generation optical/MPLS networks,” JOURNAL OF LIGHTWAVE TECHNOLOGY, Vol. 21, No. 5, pp. 1141-1155, MAY 2003.
[7] Elwalid, A; Mitra, D; Saniee, I, et al. “Routing and protection in GMPLS networks: From shortest paths to optimized designs,” JOURNAL OF LIGHTWAVE TECHNOLOGY, Vol. 21, No. 11, pp. 2828-2838, NOV 2003.
[8] R. Munoz, R. V. M Rivera, J. Sorribes, and G. J. Giralt, “Experimental GMPLS-Based Provisioning,” JOURNAL OF LIGHTWAVE TECHNOLOGY, Vol. 23, No. 10, pp. 3034-3045, OCT. 2005.
[9]. K. Iwatsuki, Jun-ichi Kani, H. Suzuki, and M. Fujiwara, “Access and metro networks based on WDM technologies,” IEEE J. Lightwave Technol., vol. 22, no 11, pp. 1623-1630, Nov. 2004.
[10]. J.-K.Rhee, I. Tomkos, and Ming-Jun Li “A broadcast-and-select OADM optical
network with dedicated optical-channel protection,” IEEE J. Lightwave Technol.,
vol. 21, no 1, pp. 25-31, Jan. 2003.
[11]. P. Arijs, R. Meersman, W. Van Parys, E. Iannone, A. Tanzi, M. Pierpaoli, F.
Bentivoglio, and P. Demeester, “Architecture and design of optical channel
protected ring networks,” IEEE J. Lightwave Technol., vol. 19, no 1, pp. 11-22,
Jan. 2001.

[1]. K.O. Hill and G. Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,” J. Lightwave Technol., vol. 15, no. 8, pp. 1263-1276, Aug. 1997.
[2]. T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol., vol. 15, no. 8, pp. 1277-1294, Aug. 1997.
[3]. S.D. Dods and R.S. Tucker, “A comparison of the homodyne crosstalk characteristics of optical add-drop multiplexers,” IEEE J. Lightwave Technol., vol. 19, no. 12, pp. 1829-1838, Dec. 2001.
[4]. R.J.S. Pedersen and B.F.Jorgensen, “Impact of coherent crosstalk on usable bandwidth of a grating-MZI based OADM,” IEEE Photonics. Technol. Lett., vol. 10, no. 4, pp. 558-560, April 1998.
[5] Y.K. Chen, C.H. Chang, Y.L. Yang, I.Y. Kuo, T.C. Liang, “Mach–Zehnder fiber-grating-based fixed and recon-figurable multichannel optical add-drop multiplexers for DWDM networks,” Opt. Commun. (1999) 245–262.
[6] C. Pu, L.Y. Lin, E.L. Goldstein, R.W. Tkach, Client-configurable eight-channel optical add/drop multiplexer using micromachining technology, IEEE Photon. Technol. Lett. 12 (2000) 1665–1667.
[7] H. Okayama, Y. Ozeki, and T. Kunii, “Dynamic wavelength selective add/drop node comprising tunable gratings,” Electronics Letters, vol. 33, no. 10, pp. 881–882, May 1997.
[8] Jungho Kim and Byoungho Lee, “Bidirectional Wavelength Add-Drop Multiplexer Using Multiport Optical Circulators and Fiber Bragg Gratings,” Photon. Technol. Lettr., vol. 12, no 5, pp. 561-563, May 2000.
[9] Hai Yuan, Wen-De Zhong, , and Weisheng Hu” FBG-Based Bidirectional Optical Cross Connects for Bidirectional WDM Ring Networks “JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2004.
[10] Chen-Mu Tsai and Yu-Lung Lo, “Fiber-Grating Add-Drop Reconfigurable Multiplexer with Multi-channel Using in Bi-directional Optical Network,” Optical Fiber Technology, vol. 13, no. 3, pp. 260-266, July. 2007.
[11]. K.A. McGreer, “Arrayed waveguide gratings for wavelength routing,” IEEE Commun. Mag., vol. 36, no. 12, pp. 62-68, Dec. 1998.
[12]. C. Dragone, “An N×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon Technol. Letter, vol. 3, pp. 812-815, 1991.
[13]. C. Dragone, C.A. Edwards, and R. C. Kistler, “Integrated optics N×N multiplexer on silicon,” Photon Technol. Letter, vol. 3, pp. 896-899, 1991.
[14]. H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of
arrayed-waveguide N×N wavelength multiplexer,” IEEE J. Lightwave Technol.,
vol. 13, no. 3, pp. 447-455, March 1995.
[15]. H. Takahashi, K. Oda, and H. Toba, “Impact of Crosstalk in an
Arrayed-Waveguide Multiplexer on N×N Optical Interconnection,” IEEE J.
Lightwave Technol., vol. 14, no. 6, pp. 1097-1105, June 1996.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.251.72
論文開放下載的時間是 校外不公開

Your IP address is 3.144.251.72
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code