Responsive image
博碩士論文 etd-0718112-141541 詳細資訊
Title page for etd-0718112-141541
論文名稱
Title
以電漿輔助分子束磊晶在LiGaO2基板上生長M-plane GaN之特性分析
Characterization and growth of M-plane GaN on LiGaO2 substrate by Plasma-Assisted Molecular Beam Epitaxy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-06
繳交日期
Date of Submission
2012-07-18
關鍵字
Keywords
Ga2O3、熱退火處理、分子束磊晶、鋰酸鎵、非極性氮化鎵、原子力顯微鏡
AFM, Ga2O3, Molecular beam epitaxy, LiGaO2, Non-polar GaN
統計
Statistics
本論文已被瀏覽 5691 次,被下載 1146
The thesis/dissertation has been browsed 5691 times, has been downloaded 1146 times.
中文摘要
 本研究以電漿輔助分子束磊晶(Plasma-Assisted Molecular Beam Epitaxy)技術,在鋰酸鎵基板(LiGaO2)上成長M-plane的氮化鎵(GaN)薄膜。在初期的實驗中發現,GaN直接成長在LiGaO2基板上時,以多晶形式成長,且在製程後易發生剝落情況。由原子力顯微鏡觀察LiGaO2基板表面發現,有許多顆粒存在在基板上。因此,如何改善基板的表面是M-plane氮化鎵(GaN)薄膜成長在LiGaO2基板重要關鍵。
我們發現基板經酸洗並在高溫退火後,可改善GaN剝落情況。我們比較基板在真空及大氣的退火環境對基板表面的影響,在原子力顯微鏡觀察結果發現,大氣中退火的LiGaO2基板最為平整。以X-ray繞射分析GaN成長在真空及大氣退火的基板結晶品質,GaN成長在大氣退火的基板的磊晶品質最好且薄膜內應力最低,顯示GaN薄膜剝落的原因是由於過大的薄膜內應力所致。Polar-dependent PL量測成長樣品的發光強度隨著試片旋轉角度到90°達到最高值,顯示試片確實是M-plane GaN。以高解析穿透式電子顯微鏡觀察樣品的微結構,發現GaN薄膜內部Stacking fault的缺陷與LiGaO2表面的cubic-Ga2O3 nano-particle有關,比較真空及大氣的退火LiGaO2基板Ga2O3 nano-particle數量,發現大氣的退火LiGaO2基板Ga2O3 nano-particle數量較少,因此GaN結晶品質較佳。
  綜合以上的實驗結果發現,未經過退火處理的鋰酸鎵基板,不利於氮化鎵薄膜的成長,顯示基板的表面前處理及熱退火對M-plane的氮化鎵(GaN)薄膜成長有關鍵性的影響。
Abstract
 In this thesis, we have studied the growth of M-plane GaN thin film on LiGaO2 (100) substrate by Plasma-Assisted Molecular Beam Epitaxy. We found that the growth of GaN thin films on as-received LiGaO2 substrates is poly-crystalline by analysis of X-ray diffraction, and these of GaN thin films were peeled off after thin film process. Using atomic force microscopy (AFM) to scan the surface of as-received LiGaO2 substrate, we found that many particles which are Ga2O3 existed on the surface of as-received LiGaO2.
The annealing ambient for LiGaO2 substrates in vacuum and air ambient has been studied in order to improve the surface of LiGaO2. The scanning results of AFM shows that the crystal quality and stress of M-plane GaN grown on LiGaO2 (100) substrate pre-annealed in air ambient is significantly improved. We conclude that the reason of GaN peeling off from LiGaO2 substrate is attributed to stress between GaN/ LiGaO2.
The measurement of polarization-dependent PL shows that the luminescence intensity of growing sample increases and reaches a maximum at φ = 90° (E⊥c), which indicates the growing samples is M-plane GaN as well. The microstructure of growing samples was characterized by transmission electron microscopy. We found that the formation of stacking fault in GaN is attributed to the growth of GaN on cubic-Ga2O3 nano-particles. The formation of Ga2O3 nano-particles can be suppressed by pre-annealing LiGaO2 substrate in air.
It revealed that the thermal annealing LiGaO2 substrate in air ambient can improve the surface of LiGaO2 substrate effectively, and then one can grow a high quality M-plane GaN thin film on the LiGaO2 substrate.
目次 Table of Contents
利用電漿輔助分子束磊晶在LiGaO2基板上生長M-plane GaN之特性分析 i
論文審訂書.........................................................ii
中文摘要 ii

Abstract iv

第一章 前言 1

第二章實驗儀器與原理 9

2-1 反射式高能量電子繞射 9
2-2 原子力顯微鏡 11
2-3 掃描式電子顯微鏡(SEM) 14
2-4 X光繞射儀 17
2-5 光致螢光原理(photoluminescence,PL) 19
2-6 穿透式電子顯微鏡 21

第三章 實驗儀器與步驟 23
3-1 掃描式電子顯微鏡 23
3-2 光致螢光測量 (photoluminescence ,PL) 29
第四章 實驗結果與分析 31

4-1.1未經熱退火處理之LiGaO2基板以磷酸蝕刻之表面分析 31
4-1.2未退火LGO基板上成長GaN 32
4-1.3未退火LGO基板上成長GaN結構分析 35
4-1.4未退火LGO基板上成長GaN表面形貌分析 36

4-2.1經熱退火處理LiGaO2基板之分析 39
4-2.2 GaN成長在經熱退火處理LiGaO2基板 43
4-2.3 GaN成長在經熱退火處理LiGaO2基板之晶體結構分析 45
4-2.4 GaN成長在經熱退火處理LiGaO2基板之表面形貌分析 47
4-2.5 GaN成長在經熱退火處理LiGaO2基板之光性分析 52
4-2.6 GaN成長在經熱退火處理LiGaO2基板之微結構分析 54

結論 64

Reference 66
參考文獻 References
〔1〕S. H. Park, D. Ahn, and J. W. Kim, Appl. Phys. Lett. 94, 041109 (2009). “High-efficiency staggered 530 nm InGaN/InGaN/GaN quantum-well light-emitting diodes”
〔2〕P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K.Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, Appl. Phys. Lett. 100, 021104 (2012). “444.9 nm semipolar (11 2) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer”
〔3〕R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 94, 063505 (2009). “InGaN/GaN multiple quantum well solar cells with long operating wavelengths”
〔4〕E. A. Berkman, N. A. El-Masry, A. Emara, and S. M. Bedair, Appl. Phys. Lett. 92, 101118 (2008). “Nearly lattice-matched n, i, and p layers for InGaN p-i-n photodiodes in the 365–500 nm spectral range”
〔5〕N. A. Mahadik, S. B. Qadri, and M. V. Rao, Appl. Phys. Lett. 93, 222106 (2008). “Surface strain and its impact on the electrical resistivity of GaN channel in AlGaN/GaN high electron mobility transistor”
〔6〕龐文淵,中山大學物理系,碩士論文,“以分子束磊晶在鋁酸鋰基版上成長之氮化鎵的特性”
〔7〕郭浩中,賴芳儀,郭守義,五南圖書出版股份有限公司(2009),“LED原理與應用”
〔8〕P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche & K. H. Ploog, Nature 24, 406 (2000). “Spontaneous polarization and piezoelectric constants of III-V nitrides”
〔9〕 H. Masui, S. Nakamura, S. P. DenBaars, and U. K. Mishra, IEEE Trans. Electron Devices 57, 88 (2010). “Nonpolar and Semipolar III-Nitride Light-Emitting Diodes Achievements and Challenges”
〔10〕C. F. Neumark,I. L. Kuskovsky,H. Jiang,WILEY-VCH Verlag GmbH (2007).“Wide Bandgap Light Emitting Materials and Devices”
〔11〕B. Liu, R. Zhang,Z. L. Xie,J. Y. Kong,J. Yao,Q. J. Liu,Z. Zhang, D. Y. Fu,X. Q. Xiu,P. Chen,1 P. Han,Y. Shi,Y. D. Zheng,S. M. Zhou,and G. Edwards, APPLIED PHYSICS LETTERS 92, 261906 (2008).“Anisotropic crystallographic properties, strain, and their effects on band structure of m-plane GaN on LiAlO2(100)”
〔12〕R. Schuber , M.M.C. Chou , D.M. Schaadt , Thin Solid Films 518,6773(2010).“Growth of M-plane GaN on (100) LiGaO2 by plasma-assisted molecular beam epitaxy”
〔13〕K. Sakurada, A. Kobayashi, Y. Kawaguchi, J. Ohta ,H.Fujioka, Appl. Phys. Lett. 90, 211913(2007).“Low temperature epitaxial growth of GaN films on LiGaO2 substrates”
〔14〕Mitch M.C. Chou, Chenlong Chen, D.R. Hang , Wen-Ting Yang, Thin Solid Films 519 5066 (2011).“Growth of nonpolar m-plane GaN epitaxial film on a lattice-matched (100) β-LiGaO2 substrate by chemical vapor deposition”
〔15〕M.Marezio,Acta cryst 18 481 (1965),“The crystal structure of LiGaO2”
〔16〕Takao Ishii, Yasuo Tazoh, Shintaro Miyazawa, Crystal Growth 186 409—419(1998),“Single-crystal growth of LiGaO2 for a substrate of GaN thin films”
〔17〕K. Xu, P. Deng, J. Xu, G. Zhou, W.Liu, Y. Tian, Crystal Growth 216 343-347(2000),“Growth and characterization of LiGaO2 substrate crystal for GaN epitaxy”
〔18〕R. Armitage, H. Hirayama,Appl Phys let 92 092121(2008).“M-plane GaN grown on m-sapphire by metalorganic vapor phase epitaxy”

〔19〕W. A. Doolittle, T. Kropewnicki, C. Carter-Coman, S. Stock, P. Kohl,N. M. Jokerst, R. A. Metzger, S. Kang, K. K. Lee, Gary May,and April S. Brown, Journal of Vacuum Science and Technology B 16(1998)1300,“Growth of GaN on lithium gallate substrates for development of a GaN thin compliant substrate”
〔20〕T. Ishii, Y. Tazoh, S. Miyazawa, Crystal Growth 189 208-212(1998),“LiGaO2 single crystal as a lattice-matched substrate for hexagonal GaN thin films”
〔21〕S. Duan, X. Teng, P. Han, D.C. Lu, Crystal Growth 195 304-308(1998). “Growth and characterization of GaN on LiGaO2”
〔22〕C.H. Shih, I. Lo , W.Y. Pang, Y. C. Wang, M.C. Chou, Thin Solid Films 519 3569-3572(2011),“Characterization of M-plane GaN film grown on β-LiGaO2 (100) by plasma-assisted molecular beam epitaxy”
〔23〕M.A.Herman,H.Sitter,Revised and Updated Edition(1988).“Molecular Beam Epitaxy”
〔24〕黃英碩,科儀新知 26卷 第四期 (2005).“掃描探針顯微術的原理及應用”
〔25〕許如宏,林鶴南,物裡雙月刊 25卷五期 (2003).“原子力顯微術於奈米加工之應用”
〔26〕胡嘉軒,碩士論文 中山大學物理系 (2009).“在正方晶系鋰酸鋁基板上以電漿輔助分束磊晶成長氮化鎵奈米結構之表面分析”
〔27〕http://acade.must.edu.tw/upfiles/ADUpload/c23_downmul1209823853.pdf,
“SEM/EDS構造與原裡探討”
〔28〕B.D.Cullity,S.R.Stock,Person Prentice Hall,third edition(2001).“Elements Of X-ray Diffraction”
〔29〕張憲政,碩士論文 中山大學物理系(2007).“以光致螢光方法對AlGaN/GaN異質結構之研究”
〔30〕鮑忠興,劉思謙,滄海書局 民99.“近代穿透式電子顯微鏡實務”
〔31〕http://140.113.226.70/www/course/tem-2.pdf,國立交通大學材料科學與工程研究所
〔32〕J. T. Wolan and G. B. Hoflund, J. Vac. Sci. Technol. A 16, 3414 (1998). “Chemical alteration of the native oxide layer on LiGaO2(001) by exposure to hyperthermal atomic hydrogen”
〔33〕 M. Losurdo, D. Giuva, G. Bruno, Sa Huang,Tong-Ho Kim, S. Brown, Journal of Crystal Growth ,264 (2004) “The surface modification and reactivity of LiGaO2 substrates during GaN epitaxy”
〔34〕M.C. Chou, S. J. Huang, W.C. Hsu, Crystal Growth 303 585 (2007) .“Crystal gowth and polishing method of lithium aluminum oxide crystal”
〔35〕W. A. Doolittle, T. Kropewnicki, C. C. Coman, S. Stock, P.Kohl,N. M. Jokerst, R. A. Metzger, S. Kang, K. Kyun Lee, G.May,and A. S. Brown, Journal of Vacuum Science and Technology B 16(1998)1300,“Growth of GaN on lithium gallate substrates for development of a GaN thin compliant substrate”
〔36〕R. Schuber , Y.L. Chen , C.H. Shih , T.H. Huang , P. Vincze , I. Lo, L.W. Chang ,Th. Schimmel , M.M.C. Chou , D.M. Schaadt, Journal of Crystal Growth 323 (2011).“Growth of non-polar GaN on LiGaO2 by plasma-assisted MBE”
〔37〕C. H. Hsieh, I. Lo, M. H. Gau, Y. L. Chen, M.C. Hou, W. Y. Pang,Y. I Chang, Y.C. Hsu, M.W. Sham, J. C. Chiang, and J.K. Tsai, Japanese Journal of Applied Physics 47 891(2008).“Self-Assembled c-Plane GaN Nanopillars on γ-LiAlO2 Substrate Grown by Plasma-Assisted Molecular-Beam Epitaxy”
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code