Responsive image
博碩士論文 etd-0718114-104007 詳細資訊
Title page for etd-0718114-104007
論文名稱
Title
鈦基金屬玻璃薄膜在模擬體液下之生物電化學反應分析
Bio-electrochemical response of Ti-based thin film metallic glasses in simulated body fluid
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
123
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-17
繳交日期
Date of Submission
2014-08-18
關鍵字
Keywords
薄膜、鈦基金屬玻璃、生醫材料、抗腐蝕性質、電化學性質
Biomaterials, Corrosion resistance, Bio-electrochemical properties, Thin films, Ti-based metallic glass
統計
Statistics
本論文已被瀏覽 5777 次,被下載 487
The thesis/dissertation has been browsed 5777 times, has been downloaded 487 times.
中文摘要
由於鈦基金屬玻璃擁有傑出的抗腐蝕能力以及良好的機械性質,因此近年來被廣泛的研究及應用。本實驗的主題為不同鈦含量的鈦鋯矽金屬玻璃薄膜於模擬人體體液下的電化學反應行為之分析和研究。研究材料包括 純鈦、Ti47Zr41Si12、Ti58Zr33Si9、Ti66Zr25Si9、與 Ti75Zr19Si6。根據電化學分析的實驗結果發現,TZS 金屬玻璃於模擬人體體液下,擁有比起其他成分較高的抗腐蝕能力。另一方面,隨著鈦鋯矽金屬玻璃薄膜中鈦金屬成分含量的增加,則其抗腐蝕能力亦會隨之增強。正表示著,當鈦含量增加,則愈容易在其表面形成緻密的氧化層結構以保護內部金屬。在機械性質分析方面,鈦鋯矽金屬玻璃薄膜比結晶材料,如: 鈦和鋯,更具良好的機械性質,擁有更高的硬度。綜合上述的實驗結果,發現鈦鋯矽金屬玻璃比起一般結晶材料擁有更好的機械性質以及傑出的抗腐蝕能力表現。因此,鈦鋯矽金屬玻璃是一個具有高度發展潛力的生醫材料。
Abstract
Due to the excellent mechanical properties and better corrosion resistance, Ti-based amorphous alloys have been developed and investigated rapidly. In this study, the bio-electrochemical response in simulated body fluid of the Ti-Zr-Si thin film metallic glasses (TFMGs) with different contents of titanium is measured via potentiostat. The examined materials include pure Ti, Ti57.5Zr30.8Si11.7, Ti47Zr41Si12, Ti58Zr33Si9, Ti66Zr25Si9, and Ti75Zr19Si6 (all in atomic percent). According to the results of bio-corrosion potential and current, as well as the polarization resistance, it is concluded that the Ti66Zr25Si9 TFMGs possesses the highest bio-electrochemical resistance. With an increasing content of titanium, the corrosion resistance becomes progressively better. The passive current reveals that amorphous alloys can form a more protective and denser passive film on the metallic glass surface than crystalline materials. In addition, the mechanical behavior of the Ti-Zr-Si TFMGs is better than crystalline materials. Overall, the Ti-based TFMGs possess excellent bio-corrosion, biocompatibility, and mechanical properties. As a result, Ti-based TFMGs are considered to be potential materials for bio-material applications.
目次 Table of Contents
論文審定書...................................................................i
致謝...................................................................ii
中文摘要 ................................................................... v
Abstract ................................................................... vi
Table of content ...................................................................vii
List of Tables ...................................................................x
List of Figures ...................................................................xi

Chapter 1 Introduction ...................................................................1
1-1 Amorphous alloys ...................................................................1
1-2 Change and development of thin film metallic glasses ...................................................................1
1-3 Development of Ti/Zr-based metallic glasses ...................................................................3
1-4 Motivation ...................................................................5
Chapter 2 Background and Literature Review ...................................................................7
2-1 The behavior of amorphous alloys ...................................................................7
2-1-1 Mechanical properties ...................................................................7
2-1-2 Corrosion properties ...................................................................8
2-2 Empirical rules for synthesis of amorphous alloys ...................................................................8
2-3 Thin film metallic glasses (TFMGs) ...................................................................9
2-4 Principle of physical vapor deposition (PVD) ...................................................................10
2-4-1 Introduction of sputtering process ...................................................................10
2-4-2 DC/RF magnetic sputtering process ...................................................................13
2-4-3 Growth of sputter-deposited thin film ...................................................................15
2-5 Corrosion ...................................................................16
2-5-1 Corrosion behaviors ...................................................................16
2-5-2 Electrochemical tests ...................................................................18
2-5-3 Electrochemical Impedance Spectroscopy (EIS) ...................................................................21
2-6 Biocompatibility ...................................................................22
2-7 Nanoindentation technique ...................................................................24
Chapter 3 Experimental Procedures ...................................................................28
3-1 Materials ...................................................................28
3-2 Sample preparation ...................................................................28
3-2-1 Film preparation ...................................................................29
3-3 Property measurements and analyses ...................................................................30
3-3-1 X-ray diffraction (XRD) ...................................................................30
3-3-2 Atomic forced microscope (AFM) ...................................................................30
3-3-3 Scanning electron microscopy (SEM) observations and energy dispersive spectrometry (EDS) ...................................................................30
3-3-4 Electrochemical analysis ...................................................................31
3-3-5 X-ray photoemission spectroscopy (XPS) analysis ...................................................................31
3-3-6 Electrochemical impedance spectroscopy ...................................................................32
3-3-7 Nanoindentation test ...................................................................32
Chapter 4 Results and Discussions ...................................................................33
4-1 Preparation of thin film metallic glasses ...................................................................33
4-2 XRD analysis ...................................................................34
4-3 AFM analysis ...................................................................34
4-4 SEM/EDS observations ...................................................................35
4-5 XPS analysis ...................................................................36
4-6 Potentiodynamic polarization measurement ...................................................................37
4-7 EIS analysis ...................................................................38
4-8 Mechanical property analyses ...................................................................40
4-9 Summary ...................................................................41
Chapter 5 Conclutions ...................................................................43
References ...................................................................45
Tables ...................................................................51
Figures ...................................................................56
參考文獻 References
[1] W. L. Johnson. MRS Bull, 24, (1999)42-56.
[2] S. Hiromoto, T. Hanawa. Electrochim Acta , 47, (2002) 1343–1349.
[3] ML. Morrison, RA. Buchanan, A. Peker, PK. Liaw, JA. Horton. J Non-Cryst Solids, 353, (2007) 2115–2124.
[4] L. Liu, Qiu CL, Q. Chen, KC. Chan, SM. Zhang. J Biomed Mater Res A, 86,(2008) 160–169.
[5] WH. Jiang, F. Jiang, BA. Green, FX. Liu, PK. Liaw, H. Choo, KQ. Qiu. Appl Phys Lett, 91, (2007) 041904.
[6] W. Klement, R. H. Williams, P. Duwez, Nat., 187 (1960) 869-870.
[7] R. B. Schwarz and W. L. Johnson, Physical Review Letters, 51 (1983) 415-418.
[8] E. J. Cotts, W. J. Meng and W. L. Johnson, Physic Review Letters, 57 (1986) 2295-2298.
[9] M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, Magnesium and its alloysasorthopedic biomaterials: a review. Biomaterials, 27, (2006)1728-1734.
[10] H. S. Chou, J. C. Huang, T. H. Lai, L. W. Chang, X. H. Du, J. P. Chu and T. G. Nieh, J. Alloy Compd., 483, (2009) 341-345.
[11] B. Golding, B. G. Bagley and F. S. L. Hsu, Phys. Rev. Lett., 29, 68-70 (1972).
[12] Y. Wang, J. Li, A. V. Hamza and T. W. Barbee, Proc. Natl. Acad. Sci. U. S. A., 104, (2007) 11155-11160.
[13] R. B. Schwarz and W.L. Johnson, Phys. Rev. Lett., 51, (1983)415-418.
[14] E. J. Cotts, W. J. Meng, and W. L. Johnson, Phys. Rev. Lett., 57, (1986) 2295-2298.
[15] C.W. Chu, Jason S.C. Jang, S.M. Chiu, J.P. Chu, Thin Solid Films, 517, (2009) 4930–4933.
[16] C.Y. Chuang, Y.C. Liao, J.W. Lee, C.L. Li, J. P. Chu, J.G. Duh, Thin Solid Films, 529, (2013) 338–341.
[17] A.Inoue, Acta Mater. 48 (2000) 279–306.
[18] T. Zhang, A. Inoue and T. Masumoto, Mater. Sci. Eng. A 181 (1994) 1423–1426.
[19] A. Inoue, N. Nishiyama, K. Amiya, T. Zhang and T. Masumoto, Mater.Lett. 19 (1994) 131–135.
[20] K. Amiya, N. Nishiyama, A. Inoue and T. Masumoto, Mater. Sci. Eng.A 179–180 (1994) 692–696.
[21] T. Zhang and A. Inoue, Mater. Trans, JIM 39 (1998) 1001–1006.
[22] T. Zhang and A. Inoue, Mater. Sci. Eng. A 304–306 (2001) 771–774.
[23] J. M. Park, Y. C. Kim, W. T. Kim and D. H. Kim, Mater. Trans. 45(2004) 595–598.
[24] F.X. Qin, M. Yoshimura, X.M. Wang, S.L. Zhu, A. Kawashima, K. Asami, A. Inoue, Mater Trans, 48 (2007) 1855-1858.
[25] J.J. Oak, A. Inoue, Mat Sci Eng a-Struct, 449 (2007) 220-224.
[26] S.L. Zhu, X.M. Wang, F.X.Qin, A.Inoue, A new Ti-based bulk glassyalloy with potential for biomedical application. Mater Sci Eng A, 459 (2007) 233.
[27] F.X. Qin, X.M.Wang,S.L. Zhu, A. Kawashima, K. Asami, A. Inoue, Fabrication and corrosion property of novel Ti-based bulk glassyalloys without Ni. Mater Trans, 48(2007) 515.
[28] C. Mariana, G. Annett, C.G. Andreea, F.G. Petre, A. Somayeh, M. Christine, E. Jürgen , C 33, Materials Science and Engineering (2013) 875–883.
[29] V. Schroeder, C.J. Gilbert, R.O. Ritchie, Scripta Mater, 38 (1998) 1481-1485.
[30] T. Zhang, A. Inoue,Materials Research Society Symposium Proceedings, 554 (1999) 1.
[31] S. Hiromoto, A.P. Tsai, M.Sumita,T. Hanawa, Corr Sci,42 (2000) 1651–1660.
[32] S. Hiromoto, T. Hanawa, ElectrochimActa, 47(2002) 1343–1349.
[33] S. Hiromoto, A.P.Tsai, M.Sumita, T.Hanawa, Corr Sci, 42 (2000) 2193–2200.
[34] C.H. Huang, J.C. Huang, J.B. Li, J.S.C. Jang, C 33, Materials Science and Engineering (2013) 4183–4187
[35] M.L. Morrison, R.A. Buchanan, R.V. Leon, C.T. Liu, B.A. Green, P.K.Liaw, J.A.Horton, J BiomedMater Res A, 74 (2005) 430–438.
[36] M.L. Morrison, R.A. Buchanan, A. Peker, W.H. Peter, J.A. Horton, P.K. Liaw, Intermetallics, 12(2004) 1177–1181.
[37] M.L. Morrison, R.A. Buchanan, A. Peker, P.K. Liaw, J.A. Horton, J Non-CrystSolids, 353(2007) 2115–2124.
[38] X.H. Lin, W.L. Johnson, W.K. Rhim, Mater Trans JIM, 38 (1997) 473-477.
[39] Y. Wang, J. Li, A. V. Hamza and T. W. Barbee, Proc. Natl. Acad. Sci. U. S. A., 104, (2007)11155-11160.
[40] J.P.Chu, J.C.Huang, J.S.C. Jang, Y.C.Wang and P.K. Liaw, JOM, 62 (2010) 9.
[41] 吳學陞, 工業材料, 149 (1999) 1.
[42] 鄭振東, 非晶質金屬漫談,建宏出版社,Taipei,Taiwan, (1990).
[43] K. Hashimoto: Passivity of Metals and Semiconductors, ElsevierScience Publishers, Amsterdam, (1983) 235.
[44] A. Inoue, Bulk Amorpohus Alloys Practical Characteristics and Applications, Institute for Material Research, Tohoku University, Sendai, Japan, (1999).
[45] H.J. Güntherodt, H. Beck (ed.), Glassy Metals I, Springer-Verlag, Berlin Heidelberg, Germany, (1981).
[46] A. Inoue, K. Nakazato, Y. Kawamura, A.P. Tsai, T. Masumoto, Mater Trans JIM, 35 (1994) 95-102.
[47] A. Inoue, Mater Trans JIM, 36 (1995) 866-875.
[48] A. Inoue, Mat Sci Eng A-Struct, 226 (1997) 357-363.
[49] A. Inoue, T. Zhang, A. Takeuchi, Materials Science Forum, 269-272 (1998) 855-864.
[50] A. Inoue, A. Takeuchi, T. Zhang, Metall Mater Trans A, 29 (1998) 1779-1793.
[51]A. Inoue, Bulk Amorpohus Alloys. Trans Tech Publications, Zurich, Swiss, (1998).
[52] R.E. Reed-Hill, Physical Metallurgy Principles, PWS, Boston, USA, (1994).
[53] Y. Liu et al., Proceedings of the 14th IEEE International Conference on Micro Electro and Mechanical Systems (Piscataway, NJ: IEEE, 2001), pp. 102–105.
[54] J.P. Chu, J.C. Huang, J.P. Chu, J.S.C. Jang, Y.C. Wang, and P.K. Liaw, JOM, 62 (2010) 19-24.
[55] J. Paillier, C. Mickel, P.F. Gostin, A. Gebert, Mater. Charact. 61 (2010) 1000.
[56] X.H. Du, J.C. Huang, H.M. Chen, H.S. Chou,Y.H. Lai, K.C. Hsieh, J.S.C. Jang, P.K. Liaw, Intermetallics, 17 (2009) 607-613.
[57] D.E. Polk, D.Turnball, Acta Metall., 20 (1972) 493-498.
[58] H.S. Chou, J.C. Huang, Y.H. Lai, L.W. Chang , X.H. Du, J.P. Chu, T.G. Nieh, J. Alloys Comd., 483 (2009) 341-354.
[59] K. Seshan, Handbook of Thin-Film Deposition Processes and Techniques, Noyes Publications, Park Ridge, N.J., USA (1988).
[60] D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Noyes Publications, Westwood (1998).
[61] K. Wasa, and S. Hayakawa, Handbook of Sputter Deposition Technology, Noyes Publications, Park Ridge, NJ, (1991).
[62] W. Zou, Synthesis of Giant Magnetoresistive Multilayers, University of Virginia, (2001).
[63] “Handbook of Thin-Film Deposition Processes and Techniques:Principles, Methods, Equipment and Applications”, Edited by K. K.Schuegraf, Noyes, Park Ridge, N.J. (1988).
[64] M. Copel, M.C. Reuter, Efthimios Kaxiras and R.M. Tromp, Physical Review Letters, 63 (1989) 632-635.
[65] 柯賢文, 腐蝕及其防制,全華科技圖書股份有限公司, (2006).
[66] 熊楚強, 王月, 電化學, 文京圖書有限公司,(1996).
[67] Y.B. Wang, H.F. Li, Y.F. Zheng, M. Li, Mater. Sci. Eng. C 32 (2012) 599–606.
[68] A. Vale´ria, M.A. Bett, Electrochimica Acta, 47 (2002) 2081-2091.
[69] M.R.S. Abouzari, F. Berkemeier, G. Schmitz, D. Wilmer, Solid State Ionics 180 (2009) 922–927.
[70] D.F. Williams, The Williams Dictionary of Biomaterials, University of Liverpool Press, (1999).
[71] Dorland's Medical Dictionary.
[72] International Dictionary of Medicine and Biology.
[73] U.K. Mudali, T.M. Sridhar, B. Raj, Sadhana-Acad P Eng S, 28 (2003) 601-637.
[74] J. Schroers, G. Kumar, T.M. Hodges, S. Chan, T.R. Kyriakides, Jom-Us, 61 (2009) 21-29.
[75] S. Buzzi, K.F. Jin, P.J. Uggowitzer, S. Tosatti, T. Gerber, J.F. Loffler, Intermetallics, 14 (2006) 729-734.
[76] C.L. Qiu, Q. Chen, L. Liu, K.C. Chan, J.X. Zhou, P.P. Chen, S.M. Zhang, Scripta Mater, 55 (2006) 605-608.
[77] L. Liu, Z. Liu, K.C. Chan, H.H. Luo, Q.Z. Cai, S.M. Zhang, Scripta Mater, 58 (2008) 231-234.
[78] L. Liu, C.L. Qiu, Q. Chen, K.C. Chan, S.M. Zhang, J Biomed Mater Res A, 86A (2008) 160-169.
[79] L. Liu, C.L. Qiu, C.Y. Huang, Y. Yu, H. Huang, S.M. Zhang, Intermetallics, 17 (2009) 235-240.

[80] J.B. Pethicai, R. Hutchings, W.C. Oliver, Philosophical Magazine A, 48 (1983) 593-606.
[81] J.L. Loubet, J.M. Georges, O. Marchesini, G. Meille, Journal of Tribology, 106 (1984) 43-48.
[82] W.C. Oliver, C.J. Mchargue, S.J. Zinkle, Thin Solid Films, 153 (1987) 185-196.
[83] C.A. Schuh, Materialstoday, 9 (2006) 32-40.
[84] R. Saha, W.D. Nix, Acta Materialia, 50 (2002) 23-38.
[85] S.J. Bull, Journal of Physics D: Applied Physics, 38 (2005) R393-R413.
[86] C.Lavos-Valereto, I.Costa, S.Wolynec, J Biomed Mater Res, 63(2002) 664-670.
[87] K.-H. Frosch, K.M. Stürmer, Eur. J. Trauma 32 (2006) 149–159.
[88] J.A. Disegi, Injury 31 (2000) D14–D17.
[89] J. C. Huang, J. P. Chu, J. S. C. Jang , Intermetallics, 17 (2009) 973-987.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code