Responsive image
博碩士論文 etd-0718114-124252 詳細資訊
Title page for etd-0718114-124252
論文名稱
Title
極細鎢奈米線與奈米管之機械、電子與熱學性質分析
Mechanical, Electronic and thermal properties of ultrathin tungsten nanowires and nanotubes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-18
繳交日期
Date of Submission
2014-08-18
關鍵字
Keywords
CO氧化、鎢奈米管、鎢奈米線、局部電子態密度(PDOS)、分子動力學、密度泛函理論
CO oxidation, W nanowire, W nanotube, partial density of states, Molecular dynamics, Density functional theory
統計
Statistics
本論文已被瀏覽 5693 次,被下載 542
The thesis/dissertation has been browsed 5693 times, has been downloaded 542 times.
中文摘要
本論文利用basin-hopping (BH)方法搭配tight-binding(TB)勢能預測出極細鎢奈米線(W nanowire)與鎢奈米管(W nanotube)之穩定結構,再利用分子動力學(Molecular dynamic)與密度泛函理論-分子動力學(Density functional theory-Molecular dynamic, DFT-MD)探討鎢奈米線與奈米管之機械性質與熱穩定性,最後以密度泛函理論(Density functional theory, DFT)分析螺旋鎢奈米管之氧化行為與路徑。由分析奈米線與奈米管的機械性質結果可得,鎢奈米線及奈米管具有很好的延性,並且楊氏模數隨尺寸縮小而下降。在熱穩定性方面,奈米線在溫度1300K以下結構都能夠穩定,而鎢奈米管熔點則低於鎢奈米線約在860K達到熔點。在電子性質方面,藉由分析不同尺寸下的鎢奈米線與奈米管的局部電子態密度,可以了解鎢奈米線與奈米管的電子軌道雜化的情形,結果顯示鎢的一維奈米結構比鎢塊材有更好的電子遷移能力,而在6種不同的鎢奈米線/管結構中又以螺旋鎢奈米管的化學活性最佳,因此我們選擇螺旋鎢奈米管以Eley-Radeal(ER)機制計算CO分子在表面的氧化路徑並與W(111)表面做比較,接著計算CO氧化過程中的局部電子態密度(Partial density of states, PDOS)來了解鎢奈米管與吸附分子間的相互作用,由計算結果可得在鎢奈米管上有比較小的能障0.468 eV,相較於W(111)表面更容易催化CO分子,這表示鎢奈米管具有更優越的催化活性能夠取代其他結構做為催化劑的材料。
Abstract
In this study, the structures of ultrathin W nanowires and nanotubes were predicted by the simulated annealing basin-hopping method (SABH) with the tight-binding potential. The mechanical properities and thermal stability of the W nanowires and nanotubes were further examined by the molecular dynamic (MD) calculation and density functional theory molecular dynamics (DFT-MD) simulation. Furthermore, the oxidation of CO molecules on W helical nanotube has also been investigated by DFT calculations. The mechanical properties results of nanowires and nanotubes are presented that W nanowires and nanotubes possess good ductility and their Young's moduli decrease with decreasing of size. In terms of thermal stability, these W nanowires are still stable at temperatures as high as 1300 K. In the electronic properties, we analyze the PDOS of W nanowires and nanotubes with different sizes to understand orbital hybridization. The results show that one-dimension W nanostructures possess better charge transfer capabilities than bulk W, and the W helical nanotube has the best chemical activity in six structures. Therefore, Eley-Radeal (ER) mechanism is considered for examining and comparing the mechanism of CO oxidation on W helical nanotube and W (111) surface. Then the PDOS of the CO oxidation were analyzed to understand the interaction between W nanotube and adsorbed molecules. The calculations show that the energy barrier for W nanotubes is only 0.468 eV, lower than W(111) surface, this result means that W nanotubes have good catalytic activity which can be replaced other structures as catalysts.
目次 Table of Contents
論文審定書 I
致謝 II
中文摘要 III
英文摘要 IV
目錄 VI
圖次 VIII
表次 X
第一章 緒論 1
1.1 研究目的與動機 1
1.2 鎢奈米線與奈米管文獻回顧 3
1.3 本文架構 6
第二章 模擬方法與理論介紹 7
2.1 分子靜力學理論 7
2.1.1 Basin-hopping計算法 7
2.1.2 懲罰函數(Penalty function) 8
2.1.3 勢能函數 (Potential function) 9
2.2 密度泛函理論(DENSITY FUNCTIONAL THEORY, DFT) 11
2.2.1 電子密度 11
2.2.2 Hohenberg-Kohn model(HK model) 12
2.2.3 Kohn-Sham equation (KS equation) 13
2.2.4 交換相關函數(Exchange-Correlation Function) 15
2.3 密度泛函理論-分子動力學(DFT-MD) 17
2.3.1 運動方程式 18
2.3.2 積分法則 19
2.3.3 時間步階選取 20
2.3.4 系綜(Ensemble) 21
2.3.5 Nosé-Hoover方法 22
2.4 原子級應力分析 24
2.5 分析方法 27
2.5.1 吸附能(Adsorption Energy) 27
2.5.2 Nudged elastic band (NEB)方法 28
2.5.3 原子距離變化量統計 30
第三章 結果與討論 31
3.1 鎢奈米線與奈米管幾何結構、機械性質與熱穩定性質分析 32
3.1.1 物理模型之建構 32
3.1.2 鎢奈米線與奈米管之機械性質 36
3.1.3 鎢奈米線與奈米管之熱穩定性質 41
3.2 鎢奈米線與奈米管電子性質之研究 46
3.3 CO在W奈米管及W(111)表面上的氧化性質研究 54
3.3.1 氧原子與氧分子吸附於W奈米管與W(111)表面的模型 54
3.3.2 W奈米管與W(111) 活性區域與表面吸附能分析 56
3.3.3 鎢奈米管氧化路徑分析 60
3.3.4 CO在W奈米管上氧化過程中PDOS分析 64
第四章 結論與建議 66
4.1 結論與建議 66
4.2 未來展望 67
參考文獻 68
參考文獻 References
[1] W. A. Deheer, W. S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro, et al., "Aligned carbon nanotube films: production and optical and electronic properties," Science, vol. 268, pp. 845-7, 1995.
[2] 劉吉平 and 郝向陽, "納米科學與技術," 2002.
[3] C. L. Cheung, J. H. Hafner, T. W. Odom, K. Kim, and C. M. Lieber, "Growth and fabrication with single-walled carbon nanotube probe microscopy tips," Applied Physics Letters, vol. 76, p. 3136, 2000.
[4] Z. Chen, M. Waje, W. Li, and Y. Yan, "Supportless Pt and PtPd Nanotubes as Electrocatalysts for Oxygen-Reduction Reactions," Angewandte Chemie, vol. 119, pp. 4138-4141, 2007.
[5] B. Lim, M. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. Lu, et al., "Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction," Science, vol. 324, pp. 1302-1305, 2009.
[6] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991.
[7] P. M. Ajayan and S. lijima, "Capillary-induced filling of carbon nanotubes," Nature, vol. 361, pp. 333-334, 1993.
[8] Y. Q. Chen, X. F. Cui, K. Zhang, D. Y. Pan, S. Y. Zhang, B. Wang, et al., "Bulk-quantity synthesis and self-catalytic VLS growth of SnO2 nanowires by lower-temperature evaporation," Chemical Physics Letters, vol. 369, pp. 16-20, 2003.
[9] Z. W. Pan, Z. R. Dai, and Z. L. Wang, "Nanobelts of semiconducting oxides," Science, vol. 291, pp. 1947-9, 2001.
[10] J. Y. Li, X. L. Chen, Z. Y. Qiao, Y. G. Cao, and Y. C. Lan, "Formation of GaN nanorods by a sublimation method," Journal of Crystal Growth, vol. 213, pp. 408-410, 2000.
[11] K. Tanaka, K. Okahara, M. Okada, and T. Yamabe, "Electronic-properties of bucky-tube model," Chemical Physics Letters, vol. 191, pp. 469-472, 1992.
[12] R. Kubo, "Electronic properties of metallic fine particles," Journal of the Physical Society of Japan, vol. 17, pp. 975, 1962.
[13] J. Kong., Adv. Mater, vol. 13, 2001.
[14] J. Kong, "Nanotube Molecular Wires as Chemical Sensors," Science, vol. 287, pp. 622-625, 2000.
[15] Y. Kondo and K. Takayanagi, "Synthesis and Characterization of Helical Multi-Shell Gold Nanowires," Science, vol. 289, pp. 606-608, 2000.
[16] Y. Oshima, H. Koizumi, K. Mouri, H. Hirayama, K. Takayanagi, and Y. Kondo, "Evidence of a single-wall platinum nanotube," Physical Review B, vol. 65, p. 121401, 2002.
[17] M. J. Lagos, SatoF, BettiniJ, RodriguesV, D. S. Galvao, and UgarteD, "Observation of the smallest metal nanotube with a square cross-section," Nat Nano, vol. 4, pp. 149-152, 2009.
[18] H. Huang, Y. Q. Wu, S. L. Wang, Y. H. He, J. Zou, B. Y. Huang, et al., "Mechanical properties of single crystal tungsten microwhiskers characterized by nanoindentation," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 523, pp. 193-198, 2009.
[19] V. Cimalla, C. C. Rohlig, J. Pezoldt, M. Niebelschutz, O. Ambacher, K. Bruckner, et al., "Nanomechanics of single crystalline tungsten nanowires," Journal of Nanomaterials, 2008.
[20] S. Z. Li, X. D. Ding, J. Li, X. B. Ren, J. Sun, and E. Ma, "High-Efficiency Mechanical Energy Storage and Retrieval Using Interfaces in Nanowires," Nano Letters, vol. 10, pp. 1774-1779, 2010.
[21] Y. H. Lee, C. H. Choi, Y. T. Jang, E. K. Kim, B. K. Ju, N. K. Min, et al., "Tungsten nanowires and their field electron emission properties," Applied Physics Letters, vol. 81, pp. 745-747, 2002.
[22] K. S. Yeong and J. T. L. Thong, "Field-emission properties of ultrathin 5 nm tungsten nanowire," Journal of Applied Physics, vol. 100, p. 114325, 2006.
[23] J. Choi and J. Kim, "Highly sensitive hydrogen sensor based on suspended, functionalized single tungsten nanowire bridge," Sensors and Actuators B: Chemical, vol. 136, pp. 92-98, 2009.
[24] I. N. Remediakis, N. Lopez, and J. K. Nørskov, "CO Oxidation on Rutile-Supported Au Nanoparticles," Angewandte Chemie International Edition, vol. 44, pp. 1824-1826, 2005.
[25] B. Yoon, H. Häkkinen, U. Landman, A. S. Wörz, J.-M. Antonietti, S. Abbet, et al., "Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO," Science, vol. 307, pp. 403-407, 2005.
[26] D. Matthey, J. G. Wang, S. Wendt, J. Matthiesen, R. Schaub, E. Lægsgaard, et al., "Enhanced Bonding of Gold Nanoparticles on Oxidized TiO2(110)," Science, vol. 315, pp. 1692-1696, 2007.
[27] M. Valden, X. Lai, and D. W. Goodman, "Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties," Science, vol. 281, pp. 1647-1650, 1998.
[28] L. Grabow, Y. Xu, and M. Mavrikakis, "Lattice strain effects on CO oxidation on Pt(111)," Physical Chemistry Chemical Physics, vol. 8, pp. 3369-3374, 2006.
[29] H.-T. Chen, J.-G. Chang, S.-P. Ju, and H.-L. Chen, "First-principle calculations on CO oxidation catalyzed by a gold nanoparticle," Journal of Computational Chemistry, vol. 31, pp. 258-265, 2010.
[30] W. An, Y. Pei, and X. C. Zeng, "CO Oxidation Catalyzed by Single-Walled Helical Gold Nanotube," Nano Letters, vol. 8, pp. 195-202, 2007.
[31] J. Yang, B. Li, Q. Zhang, W.-l. Yim, and L. Chen, "Catalytic Oxygen Activation on Helical Gold Nanowires," The Journal of Physical Chemistry C, vol. 116, pp. 11189-11194, 2012.
[32] H.-T. Chen, D. G. Musaev, and M. C. Lin, "Adsorption and Dissociation of COx (x = 1, 2) on W(111) Surface :  A Computational Study," The Journal of Physical Chemistry C, vol. 112, pp. 3341-3348, 2008.
[33] S.-F. Peng and J.-J. Ho, "Theoretical Study of H2S Dissociation and Sulfur Oxidation on a W(111) Surface," The Journal of Physical Chemistry C, vol. 114, pp. 19489-19495, 2010.
[34] H.-T. Chen, H.-L. Chen, S.-P. Ju, D. G. Musaev, and M. C. Lin, "Density Functional Studies of the Adsorption and Dissociation of NOx (x = 1, 2) Molecules on the W(111) Surface," The Journal of Physical Chemistry C, vol. 113, pp. 5300-5307, 2009.
[35] R. J. W. K. E. Johnson, and S. Chiang "Effects of adsorption site and surface stress on ordered structures of oxygen adsorbed on W(110)," Phys. Rev. Lett. , vol. 71, pp. 1055-1058 1993
[36] J. C. B. a. M. G. Lagally, "Order-Disorder Transition and Adatom-Adatom Interactions in a Chemisorbed Overlayer: Oxygen on W(110)," Phys. Rev. Lett. , vol. 35, pp. 442-445, 1975.
[37] M. A. V. H. a. S. Y. Tong, "Chemisorption Bond Length and Binding Location of Oxygen in a p(2×1) Overlayer on W(110) Using a Convergent, Perturbative, Low-Energy-Electron-Diffraction Calculation," Phys. Rev. Lett. , vol. 35, pp. 1092-1095, 1975
[38] "Ab initio phase diagram of oxygen adsorption on W(110)," J. Phys.: Condens. Matter vol. 21, p. 134017, 2009
[39] T.-U. N. a. R. Gomer, "The diffusion of oxygen on W(110) revisited " J. Chem. Phys., vol. 106, p. 10349, 1997.
[40] R. G. E.A. Daniels, "The diffusion of oxygen on W(001 )," Surface Science vol. 397 pp. 209-216, 1998
[41] M. T. a. R. Gomer, "Diffusion anisotropy of oxygen and of tungsten on the tungsten (211) plane," J. Chem. Phys., vol. 84, pp. 13 1986.
[42] J. Y. H. Meng Hsiung Weng, Shin Pon Ju,Jee Gong Chang, Hsin Tsung Chen, Hui Lung Chen, Jenn Sen Lin, and Wen Jay Lee, "Adsorption and Dissociation of the O2 on W(111) Surface: A Density Functional Theory Study," Journal of Nanoscience and Nanotechnology, vol. 10, pp. 7196-7199, 2010.
[43] D. G. M. Hsin-Tsung Chen, and M. C. Lin, "Adsorption and Dissociation of COx (x ) 1, 2) on W(111) Surface : A Computational Study," J. Phys. Chem. C, vol. 112, pp. 3341-3348, 2008.
[44] D. S. S. Liang Chen, and J. Karl Johnson, "First Principles Study of Adsorption and Dissociation of CO on W(111)," J. Phys. Chem. B, vol. 110, pp. 1344-1349, 2006.
[45] H. J. K. Sang Joon Choe, Dong Ho Park, Do Sung Huh, and Soon-Bo Lee, "The Adsorptions and Configurations of CO Molecules on W (110) and W (100) Surface: Molecular Orbital Theory," Bull. Korean Chem. Soc.,, vol. 25, pp. 1314-1320, 2004.
[46] M. H. Weng and S. P. Ju, "CO Oxidation Mechanism on Tungsten Nanoparticle," The Journal of Physical Chemistry C, vol. 116, pp. 18803-18815, 2012.
[47] D. J. Wales and J. P. K. Doye, "Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms," The Journal of Physical Chemistry A, vol. 101, pp. 5111-5116, 1997.
[48] D. C. Liu and J. Nocedal, "On the Limited Memory Bfgs Method for Large-Scale Optimization," Mathematical Programming, vol. 45, pp. 503-528, 1989.
[49] S. S. Tripathi and K. S. Narendra, "OPTIMIZATION USING CONJUGATE GRADIENT METHODS," Ieee Transactions on Automatic Control, vol. AC15, 1970.
[50] G. N. Vanderplaats, Numerical optimization techniques for engineering design: with applications vol. 1: McGraw-Hill New York, 1984.
[51] F. Cleri and V. Rosato, "Tight-binding potentials for transition metals and alloys," Physical Review B, vol. 48, pp. 22-33, 1993.
[52] P. Hohenberg and W. Kohn, "INHOMOGENEOUS ELECTRON GAS," Physical Review B, vol. 136, 1964.
[53] D. R. Hartree, "The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods," Mathematical Proceedings of the Cambridge Philosophical Society, vol. 24, pp. 89-110, 1928.
[54] W. Kohn and L. J. Sham, "Self-Consistent Equations Including Exchange and Correlation Effects," Physical Review, vol. 140, pp. A1133-A1138, 1965.
[55] D. M. Ceperley and B. J. Alder, "Ground State of the Electron Gas by a Stochastic Method," Physical Review Letters, vol. 45, pp. 566-569, 1980.
[56] B. J. O. Teleman, S. Engstrom, "A molecular-dynamics simulation of a water model with intramolecular defgrees of freedom," Mol. Phys., vol. 60, pp. 193-203, 1987.
[57] S. C. M.S. Lee, D.G. Kanhere, "First-principles investigation of finite-temperature behavior in small sodium clusters," J. Chem. Phys., vol. 123, 2005.
[58] M. S. L. S.M. Ghazi, D.G. Kanhere, " The effects of electronic structure and charged state on thermodynamic properties: An ab initio molecular dynamics investigations on neutral and charged clusters of Na-39, Na-40, and Na-41," J. Chem. Phys., vol. 128, 2008.
[59] A. R. Leach, Molecular modelling: principles and applications: Pearson Education, 2001.
[60] D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to applications vol. 1: Academic press, 2001.
[61] S. N. a. C. S. N. Chandra, "Local elastic properties of carbon nanotubes in the presence of tone-wales defects," Physical Review B, vol. 69, p. 094101, 2004.
[62] M. H. N. Tokita, C. Azuma and T. Dotera, "Voronoi space division of a polymer: Topological effects, free volume, and surface end segregation," Journal of Chemical Physics, vol. 120, pp. 496-505, 2004.
[63] N. Chandra, S. Namilae, and C. Shet, "Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects," Physical Review B, vol. 69, 2004.
[64] N. Tokita, M. Hirabayashi, C. Azuma, and T. Dotera, "Voronoi space division of a polymer: Topological effects, free volume, and surface end segregation," Journal of Chemical Physics, vol. 120, pp. 496-505, 2004.
[65] D. Srolovitz, K. Maeda, V. Vitek, and T. Egami, "Structural Defects in Amorphous Solids Statistical-Analysis of a Computer-Model," Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, vol. 44, pp. 847-866, 1981.
[66] N. Miyazaki and Y. Shiozaki, "Calculation of mechanical properties of solids using molecular dynamics method," Jsme International Journal Series a-Mechanics and Material Engineering, vol. 39, pp. 606-612, 1996.
[67] H. Rafii-Tabar, "Computational modelling of thermo-mechanical and transport properties of carbon nanotubes," Physics Reports-Review Section of Physics Letters, vol. 394, pp. 357-357, 2004.
[68] A. Ulitsky and R. Elber, "A new technique to calculate steepest descent paths in flexible polyatomic systems," Journal of Chemical Physics, vol. 92, pp. 1510-1511, 1990.
[69] G. Mills, H. Jonsson, and G. K. Schenter, "Reversible work transition-state theory - application to dissociative adsorption of hydrogen," Surface Science, vol. 324, pp. 305-337, 1995.
[70] G. Henkelman, B. P. Uberuaga, and H. Jonsson, "A climbing image nudged elastic band method for finding saddle points and minimum energy paths," Journal of Chemical Physics, vol. 113, pp. 9901-9904, 2000.
[71] R. Liu, "Adsorption and dissociation of H2O on Au surface: A DFT study," Computational and Theoretical Chemistry, vol. 1019, pp. 141-145, 2013.
[72] A. G. Worthing, "Atomic Heats of Tungsten and of Carbon at Incandescent Temperatures," Physical Review, vol. 12, pp. 199-225, 1918.
[73] K.-P. Huber and G. Herzberg, Constants of diatomic molecules: Springer, 1979.
[74] B. Hammer, L. B. Hansen, and J. K. Nørskov, "Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals," Physical Review B, vol. 59, pp. 7413-7421, 1999.
[75] H. J. Monkhorst and J. D. Pack, "Special points for Brillouin-zone integrations," Physical Review B, vol. 13, pp. 5188-5192, 1976.
[76] H. J. F. Jansen and A. J. Freeman, "Total-energy full-potential linearized augmented-plane-wave method for bulk solids: Electronic and structural properties of tungsten," Physical Review B, vol. 30, pp. 561-569, 1984.
[77] M. J. Mehl and D. A. Papaconstantopoulos, "Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals," Physical Review B, vol. 54, pp. 4519-4530, 1996.
[78] L. T. Kong, J. B. Liu, W. S. Lal, and B. X. Liu, "Correlation of lattice constant versus tungsten concentration of the Ni-based solid solution examined by molecular dynamics simulation," Journal of Alloys and Compounds, vol. 337, pp. 143-147, 2002.
[79] Z. Hu, J. G. Dong, J. R. Lombardi, and D. M. Lindsay, "Optical and Raman spectroscopy of mass‐selected tungsten dimers in argon matrices," The Journal of Chemical Physics, vol. 97, pp. 8811-8812, 1992.
[80] M. D. Morse, "Clusters of transition-metal atoms," Chemical Reviews, vol. 86, pp. 1049-1109, 1986.
[81] S. M. Hasheminejad and B. Gheshlaghi, "Dissipative surface stress effects on free vibrations of nanowires," Applied Physics Letters, vol. 97, 2010.
[82] M. Imboden, P. Mohanty, A. Gaidarzhy, J. Rankin, and B. W. Sheldon, "Scaling of dissipation in megahertz-range micromechanical diamond oscillators," Applied Physics Letters, vol. 90, 2007.
[83] P. Villain, P. Beauchamp, K. F. Badawi, P. Goudeau, and P. O. Renault, "Atomistic calculation of size effects on elastic coefficients in nanometre-sized tungsten layers and wires," Scripta Materialia, vol. 50, pp. 1247-1251, 2004.
[84] Y.-L. Liu, H.-B. Zhou, Y. Zhang, S. Jin, and G.-H. Lu, "The ideal tensile strength and deformation behavior of a tungsten single crystal," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 267, pp. 3282-3285, 2009.
[85] O. H. Nielsen and R. M. Martin, "Erratum: Quantum-mechanical theory of stress and force," Physical Review B, vol. 35, pp. 9308-9308, 1987.
[86] M. Zhang, H. Yan, Q. Wei, and H. Wang, "Mechanical and electronic properties of novel tungsten nitride," EPL (Europhysics Letters), vol. 100, p. 46001, 2012.
[87] K. Fukui, "Role of Frontier Orbitals in Chemical Reactions," Science, vol. 218, pp. 747-754, November 19, 1982.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code