Responsive image
博碩士論文 etd-0718114-150101 詳細資訊
Title page for etd-0718114-150101
論文名稱
Title
錘型微致動器之動態特性分析
A Study on the Dynamic Behavior of Hammer Type Micro-actuators
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-19
繳交日期
Date of Submission
2014-08-18
關鍵字
Keywords
Hamilton原理、靜電式微型致動器、Adomian decomposition method、有限元素分析
Finite Element Method, Hamilton’s principle, Electric Micro-actuators, Adomian decomposition method
統計
Statistics
本論文已被瀏覽 5674 次,被下載 52
The thesis/dissertation has been browsed 5674 times, has been downloaded 52 times.
中文摘要
本文主要在推導具錘型端點微致動器之基本頻率分佈與模態形式。期能建立其相關形狀與尺寸參數對此基本動態特性之關聯性。文中利用Hamilton原理配合樑理論及特殊之錘型端點邊界條件,建立基本運動方程式。研究中亦利用Adomian decomposition method 探討了各設計參數對此型致動器在不同電場條件下之靜態變形與無阻尼假設下之端點動態響應。文中亦利用ANSYS有限元素套裝軟體對所建模式之正確性進行量化驗證,分析結果顯示所推導建立之微致動器數學公式,可精確預估不同設計參數下之靜動態響應。
相關數值結果顯示,適宜之錘型微致動器參數設計,可有效控制在不同靜電場操作下之靜動態響應。有限元素結果亦驗證了此建立運動方程之適用性。希此研究結果將有助於未來此型微致動器之開發與設計工作。
Abstract
The dynamic equations of micro-hammer-type actuators are derived by employing Hamilton’s principle with the specific boundary conditions. The effect of shape and size parameters on the distribution of natural frequencies and mode shapes has also been evaluated and investigated in this study. The effect of lump mass of the end hammer on the dynamic behavior of this type actuator was studied.
The Adomian decomposition method was used to derive the deformation of the actuator with different static electric field intensity. The deformations solved from ANSYS Finite Element Software have been checked to testify the accuracy of the results calculated from the proposed model. Numerical results indicate that the proposed model and the derived equation are feasible to simulate the static and dynamic responses of this type hammer actuator with acceptable accuracy. It is expected that the proposed equations of motion are helpful to the designers to explore the relation between the design parameters and the performance of the micro-hammer-type actuators in the near future.
目次 Table of Contents
謝誌 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
符號說明 ix
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與組織章節 6
第二章 錘型微致動器之理論推導 8
2.1 錘型微致動器受靜電力驅動之之能量式 8
2.1.1 平行板電容原理 8
2.1.2 靜電力驅動下之能量式 9
2.2錘型微致動器之靜態解 13
2.2.1 Hamilton's principle介紹 13
2.2.2 Hamilton's principle之推導 14
2.2.3 特徵值問題求解系統模態 21
2.2.4 利用Adomian Decomposition Method解決初始值問題 23
2.3錘型微致動器之動態分析 26
2.3.1 錘型微致動器之模態正交性 26
2.3.2 錘型微致動器之動態行為 29
第三章 錘型微致動器之自然頻率與模態探討 32
3.1 有限元素模型 32
3.1.1 建立有限元素模型及參數設定 32
3.1.2 斂散性分析 36
3.2 錘型微致動器之模態 38
3.3 改變錘型微致動器樑端參數之自然頻率影響 41
3.4 改變錘型微致動器前方錘型質量塊大小之自然頻率影響 43
第四章 錘型微致動器之靜態與動態行為 46
4.1 改變作用電壓之位移影響 46
4.2 錘型微致動器之根部應力探討 51
4.3 錘型微致動器之自由振動 53
第五章 結論與未來工作 56
5.1 結論 56
5.2 未來工作 57
參考文獻 58
參考文獻 References
參考文獻
[1] Hornbeck, L. J. Current status of the digital micromirror device (DMD) for projection television applications. In Electron Devices Meeting, 1993.
[2] Toshiyoshi, H., & Fujita, H. “Electrostatic micro torsion mirrors for an optical switch matrix.” Microelectromechanical Systems, Journal of, 5(4), pp.231-237, 1996.
[3] Tang, W. C., Nguyen, T. C., & Howe, R. T. “Laterally driven polysilicon resonant microstructures.” Micro Electro Mechanical Systems, 1989.
[4] Akiyama, T., Collard, D., & Fujita, H. “Scratch drive actuator with mechanical links for self-assembly of three-dimensional MEMS.” Microelectromechanical Systems, Journal of, 6(1), pp.10-17, 1997.
[5] Venkatarangan, S. N., & Rajalakshmi, K. “A modification of Adomian's solution for nonlinear oscillatory systems.” Computers & Mathematics with Applications, 29(6), pp.67-73, 1995.
[6] Lesnic, D., & Elliott, L. “The decomposition approach to inverse heat conduction.” Journal of Mathematical Analysis and Applications, 232(1), pp. 82-98, 1999.
[7] Osterberg, P. M. “Electrostatically actuated microelectromechanical test structures for material property measurement.” 1995.
[8] Hirai, Y., Marushima, Y., Nishikawa, K. and Tanaka,Y., “Young’s Modulus Evaluation of Si Thin Film Fabricated by Compatiable Process with Si MEMS’s,” International Conference on Microprocesses and Nanotechnology, pp.82-83, 2002.
[9] Malik, A., Ogden, S., Amberg, G., & Hjort, K. “Modeling and analysis of a phase change material thermohydraulic membrane microactuator.” Microelectromechanical Systems, Journal of, 22(1), pp.186-194, 2013.
[10] Petersen, Kurt, et al. “Resonant beam pressure sensor fabricated with silicon fusion bonding.” Solid-State Sensors and Actuators, 1991.
[11] Kiesewetter, L., et al. “Determination of Young's moduli of micromechanical thin films using the resonance method.” Sensors and Actuators A: Physical, 35(2), pp.153-159, 1992.
[12] Lang, W. “Silicon microstructuring technology.” Materials Science and Engineering: R: Reports, 17(1), pp.1-55, 1996.
[13] Minami, K., Kawamura, S., & Esashi, M. “Fabrication of distributed electrostatic micro actuator (DEMA).” Microelectromechanical Systems, Journal of, 2(3), pp.121-127. 1993.
[14] Bullen, D., & Liu, C. “Electrostatically actuated dip pen nanolithography probe arrays.” Sensors and Actuators A: Physical, 125(2), pp.504-511, 2006.
[15] Sasaki, H., Shikida, M., & Sato, K. “A force transmission system based on a tulip-shaped electrostatic clutch for haptic display devices.” Journal of Micromechanics and Microengineering, 16(12), 2673, 2006.
[16] Legtenberg, R., Gilbert, J., Senturia, S. D., & Elwenspoek, M. “Electrostatic curved electrode actuators.” Microelectromechanical Systems, Journal of, 6(3), pp.257-265, 1997.
[17] Hirai, Y., Shindo, M., & Tanaka, Y. “Study of large bending and low voltage drive electrostatic actuator with novel shaped cantilever and electrode.” Micromechatronics and Human Science, 1998.
[18] Hirai, Y., Marushima, Y., Soda, S., Jin, D., Kawata, H., Inoue, K., & Tanaka, Y. “Electrostatic actuator with novel shaped cantilever.” Micromechatronics and Human Science, 2000.
[19] Osterberg, P., Yie, H., Cai, X., White, J., & Senturia, S. “Self-consistent simulation and modelling of electrostatically deformed diaphragms.” Micro Electro Mechanical Systems, 1994, MEMS'94, Proceedings, IEEE Workshop on, pp.28-32, IEEE, 1994.
[20] Cheng, J., Zhe, J., Wu, X., Farmer, K. R., Modi, V., & Frechette, L. “Analytical and FEM simulation pull-in study on deformable electrostatic micro actuators.” Technical Proc. of the International Conf on Modeling and Simulation of Microsystems, MSM, pp. 298-301, 2002.
[21] O'Mahony, C., Hill, M., Duane, R., & Mathewson, A. “Analysis of electromechanical boundary effects on the pull-in of micromachined fixed–fixed beams.” Journal of Micromechanics and Microengineering, 13(4), S75, 2003.
[22] Ijntema, D. J., & Tilmans, H. A. “Static and dynamic aspects of an air-gap capacitor.” Sensors and Actuators A: Physical, 35(2), pp.121-128, 1992.
[23] Tilmans, H. A., & Legtenberg, R. “Electrostatically driven vacuum-encapsulated polysilicon resonators: Part II. Theory and performance.” Sensors and Actuators A: Physical, 45(1), pp.67-84, 1994.
[24] Legtenberg, R., & Tilmans, H. A. “Electrostatically driven vacuum-encapsulated polysilicon resonators Part I. Design and fabrication.” Sensors and Actuators A: Physical, 45(1), pp.57-66, 1994.
[25] Kuang, J. H., & Chen, C. J. “Adomian decomposition method used for solving nonlinear pull-in behavior in electrostatic micro-actuators.” Mathematical and computer modelling, 41(13), pp.1479-1491, 2005.
[26] 劉晉嘉. “混合微分轉換與有限差分法在非線性靜電驅動微結構系統動態特性之研究.” 成功大學機械工程學系學位論文, pp.1-150, 2009.
[27] Meirovitch, L. Analytical methods in vibrations, pp.30-273, 1967.
[28] Rao, S. S. Vibration of continuous systems. John Wiley & Sons, 2007
[29] Osterberg, P. M., & Senturia, S. D. “M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures.” Microelectromechanical Systems, Journal, 6(2), pp.107-118, 1997.
[30] Wazwaz, A. M. “The numerical solution of sixth-order boundary value problems by the modified decomposition method.” Applied Mathematics and computation, 118(2), pp.311-325, 2001.
[31] Rach, R. “A convenient computational form for the Adomian polynomials.” Journal of mathematical analysis and applications, 102(2), pp.415-419, 1984.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code