Responsive image
博碩士論文 etd-0718114-151446 詳細資訊
Title page for etd-0718114-151446
論文名稱
Title
高功率LED熱電散熱模組之分析
A Study on the Thermoelectric Cooling Module of High Power LED Device
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
160
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-19
繳交日期
Date of Submission
2014-08-18
關鍵字
Keywords
熱管、熱電致冷晶片、高功率LED
high power LED device, heat pipe, Thermoelectric cooler
統計
Statistics
本論文已被瀏覽 5699 次,被下載 311
The thesis/dissertation has been browsed 5699 times, has been downloaded 311 times.
中文摘要
本文主要在探討高功率LED之可能散熱機制及不同設計參數可能衍生之溫度與熱應力分布,並探討熱電致冷晶片使用於高功率LED散熱之設計限制,文中利用三維ANSYS有限元素套裝軟體建構不同熱電致冷晶片設計,分析其抽取熱能的特性,經由量化數據解析熱能由LED傳遞至散熱鰭片,文中並分析藉由熱管來加強散熱模組性能之效益。文中採用結構-熱電模式,配合隨溫度變化之材料性質,依實驗結果搜尋適宜的熱對流邊界條件,以提高熱電致冷模組模擬的精準度,並利用所建立模式就LED、致冷晶片結構及元件間接合材料,進行單顆、五顆及九顆高功率LED發光模組之熱傳與應力設計分析。
數值模擬結果顯示本文提出之有限元素分析模式可成功分析高功率LED接面單純配合鰭片散熱設計,或配合致冷晶片加熱管及鰭片之組合模組。模擬結果亦顯示致冷晶片因拘束於須外載電場,保於一定功率以下配合熱管設計可有效達到降溫效益。
Abstract
The possible heat dissipation mechanisms of high power LED device have been simulated and evaluated in this study. The structure-thermoelectric elements of commercial ANSYS finite element package was employed. The traditional fin with thermoelectric cooler (TEC) and heat pipe was used to improve the heat dissipation efficiency. The simulated results indicate that the additional power involved in the TEC may limit the advantage of TEC in high power LED device. However, a better heat dissipation performance was observed for the middle power LED device.
The effect of fin parameters on the heat dissipation has also investigated in this work. The temperature distributions for different LED arrangements, eg. single, five and nine chips, was simulated and analyzed. Numerical results reveal that the proposed finite element models are possible to simulate the temperature variations of the high power LED devices with different heat dissipation designs.
目次 Table of Contents
謝誌 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 x
符號說明 xi
第一章 緒論 1
1.1 前言 1
1.2 LED產業發展 2
1.3 文獻回顧 8
1.4 研究動機 12
1.5 組織章節 13
第二章 研究相關之理論 14
2.1 熱電效應 14
2.1.1 席貝克效應Seebeck effect 14
2.1.2 帕耳帖效應Peltier effect 15
2.1.3 湯姆森效應Thomson effect 16
2.2 熱管 21
2.2.1 起源與現今 21
2.2.2 原理 21
2.2.3 使用限制 22
2.3 LED發光理論 25
2.3.1 起源與現今 25
2.3.2 白光原理 26
2.3.3 散熱機制 28
2.3.4 力學分析 29
第三章 熱電散熱模組實驗與有限元素模式建立 32
3.1研究流程 32
3.2實驗結果與分析 34
3.3相對應之有限元素模型 46
3.3.1熱電效應與熱管有限元素法 46
3.3.2有限元素模式建立 51
3.3.3模型假設與參數驗證 58
第四章 結果與討論 70
4.1各部位參數分析 70
4.1.1熱電晶片模組各部位參數變化 70
4.1.2熱電致冷模組各部位參數變化 79
4.1.3具熱管鰭片參數分析 92
4.2一般鰭片與具熱管鰭片模組 99
4.2.1單顆發光二極體模組 101
4.2.2五顆發光二極體 110
4.2.3九顆發光二極體 121
第五章 結論與未來展望 133
5.1結論 133
5.2未來展望 134
參考文獻 135
參考文獻 References
[1] LEDs Magazine, 2012.
[2] 吳永芳,小型企業創新研發計畫(SBIR)成效評估報告,中華民國經濟部,2012.
[3] Everlight Annual Report, 2013.
[4] 大前研一,「思考的原點」(初版),商周,2013。
[5] 王博達,「再見,世界工廠」(初版),先覺,2014。
[6] Cree Annual Report, 2013.
[7] Philips Annual Report, 2012.
[8] Philips Annual Report, 2013.
[9] NPD DisplaySearch, 2012.
[10] 愛德華‧奧斯本,「給青年科學家的信」(初版)(王惟芬譯),2014。
[11] Chu, R. C., and Simons, R. E., “Application of Thermoelectrics to Cooling Electronics: Review and Prospects,” IEEE 18th International Conference on Thermoelectrics, pp. 270-279, 1999.
[12] Narendran, N., Gu, Y., Freyssinier, J. P., Yu, H., and Deng, L., “Solid-state Lighting: Failure Analysis of White LEDs,” Journal of Crystal Growth, 268(3), pp. 449-456, 2004.
[13] Bera, S., Singh, R., and Garg, V., “Temperature Behavior and Compensation of Light-emitting Diodes,” IEEE Photonics Technology Letters, 17(11), pp. 2286-2288, 2005.
[14] 黃斌哲,高功率螢光玻璃發光二極體模組之溫度與熱應力分佈,碩士論文,國立中山大學機械與機電工程學系,高雄,2012。
[15] White, W. C., “Some Experiments with Peltier Effect,” Electrical Engineering, 70(7), pp. 589-591, 1951.
[16] Goldsmid, H. J. “The Thermal Conductivity of Bismuth Telluride,” Proceedings of the Physical Society, 69(2), pp. 203-209, 1956.
[17] Goldsmid, H. J., “The Electrical Conductivity and Thermoelectric Pwer of Bismuth Telluride,” Proceedings of the Physical Society, 71(4), pp. 633-646, 1958.
[18] Drabble, J. R., and C. H. L. Goodman., “Chemical Bonding in Bismuth Telluride,” Journal of Physics and Chemistry of Solids, 5(1), pp. 142-144, 1958.
[19] Drabble, J. R., Groves, R. D., and Wolfe, R., “Galvanomagnetic Effects in n-type Bismuth Telluride,” Proceedings of the Physical Society, 71(3), pp. 430-443, 1958.
[20] Goldsmid, H. J., “Principles of Thermoelectric Devices,” British Journal of Applied Physics, 11(6), pp.209-217, 1960.
[21] Kraus, A. D., Cooling electronic equipment, Prentice-Hall, 1965.
[22] Parrott, J. E., and A. W. Penn., “The Design Theory of Thermoelectric Cooling Elements and Units,” Solid-State Electronics, 3(2), pp. 91-99, 1961.
[23] Madigan, J. R., “A Hybrid Peltier-Ettingshausen Cooler for Cryogenic Temperatures,” Solid-State Electronics, 7(9), pp. 643-654, 1964.
[24] Little, E. P., “Cooling of Avionic Equipment by Thermoelectric Methods,” IEEE Transactions on Aerospace, 2(2), pp.702-710, 1964.
[25] Cheng, J. H., Liu, C. K., Chao, Y. L., and Tain, R. M., “Cooling Performance of Silicon-based Thermoelectric Device on High Power LED,” IEEE 24th International Conference on Thermoelectrics, pp. 53-56, 2005.
[26] Liu, C. K., Dai, M. J., Yu, C. K., and Kuo, S. L., “High Efficiency Silicon-based High Power LED Package Integrated with Micro-thermoelectric Device,” IEEE Internationa Microsystems, Packaging, Assembly and Circuits Technology, pp. 29-33, 2007.
[27] Taylor, R. A., and Gary L. S., “Comprehensive System-level Optimization of Thermoelectric Devices for Electronic Cooling Applications,” IEEE Transactions on Components and Packaging Technologie, 31(1), pp. 23-31, 2008.
[28] Zhong, D., Qin, H., Wang, C. H., and Xiao, Z., “Thermal Performance of Heatsink and Thermoelectric Cooler Packaging Designs in LED,” IEEE 11th International Conference on Electronic Packaging Technology and High Density Packaging, pp. 1377-1381, 2010.
[29] Gould, C. A., Shammas, N. Y. A., Grainger, S., and Taylor, I., “Thermoelectric Cooling of Microelectronic Circuits and Waste Heat Electrical Power Generation in a Desktop Personal Computer,” Materials Science and Engineering, 176(4), pp. 316-325, 2011.
[30] Min, G., and Rowe, D. M., “Experimental Evaluation of Prototype Thermoelectric Domestic-refrigerators,” Applied Energy, 83(2), pp. 133-152., 2006.
[31] Choi, H. S., Yun, S., and Whang, K. I., “Development of a Temperature-controlled Car-seat System Utilizing Thermoelectric Device,” Applied Thermal Engineering, 27(17), pp. 2841-2849, 2007.
[32] Gillott, M., Jiang, L., and Riffat, S., “An Investigation of Thermoelectric Cooling Devices for Small‐scale Space Conditioning Applications in Buildings,” International Journal of Energy Research, 34(9), pp. 776-786, 2010.
[33] Cheng, T. C., Cheng, C. H., Huang, Z. Z., and Liao, G. C., “Development of an Energy-saving Module via Combination of Solar Cells and Thermoelectric Coolers for Green Building Applications.” Energy, 36(1), pp. 133-140, 2011.
[34] 洪宇均,熱電晶片應用於LED散熱之研究,碩士論文,國立台灣大學機械工程學系,台北,2007。
[35] 張育瑋,熱電致冷散熱模組理論分析及實驗研究,博士論文,國立台灣大學機械工程學系,台北,2009。
[36] 劉柔妘,不同連接型態之二級熱電致冷片在考慮湯木森效應下之性能分析,碩士論文,國立成功大學機械工程學系,台南,2010。
[37] 黃舒榆,熱電致冷器暫態溫度變化分析之三維理論模式,碩士論文,國立成功大學航空太空工程學系,台南,2010。
[38] Antonova, E. E., and Looman, D. C., “Finite Elements for Thermoelectric Device Analysis in ANSYS.” IEEE 24th International Conference Thermoelectrics, pp. 215-218, 2005.
[39] Labudovic, M., and Li, J., “Modeling of TE Cooling of Pump Lasers.” IEEE Transactions on Components and Packaging Technologie, 27(4), pp. 724-730, 2004.
[40] 陳怡君,熱電致冷元件模擬分析暨操作條件最佳化之研究,碩士論文,國立清華大學材料科學工程研究所,新竹,2006。
[41] 饒達仁、葉科均,熱電致冷器熱應力模擬,中國機械工程學會第二十四屆全國學術研討會論文集,pp. 446-450, 2007。
[42] 柯柏丞,熱電致冷器應用於高功率發光二極體之封裝,碩士論文,國立清華大學動力機械工程研究所,2010。
[43] 吳亭瑩,熱電致冷器熱變形之實驗與數值探討,碩士論文,國立清華大學動力機械工程研究所,2010。
[44] 陳建良,熱電致冷器熱變形之探討,碩士論文,國立清華大學動力機械工程研究所,2012。
[45] 廖振業,以模擬與實驗方式探討熱電致冷晶片的冷卻及發電性能,碩士論文,國立成功大學機械工程學系,2012。
[46] Ramos-Alvarado, B., Feng, B., and Peterson, G. P., “Comparison and Optimization of Single-phase Liquid Cooling Devices for the Heat Dissipation of High-power LED Arrays.” Applied Thermal Engineering, 59(1), pp. 648-659, 2013.
[47] Li, J., Lin, F., Wang, D., and Tian, W., “A Loop-heat-pipe Heat Sink with Parallel Condensers for High-power Integrated LED Chips.” Applied Thermal Engineering, 56(1), pp. 18-26, 2013.
[48] Yung, K. C., Liem, H., Choy, H. S., and Cai, Z. X., “Thermal Investigation of a High Brightness LED Array Package Assembly for Various Placement Algorithms.” Applied Thermal Engineering, 63(1), pp. 105-118, 2014.
[49] Tang, Y., Ding, X., Yu, B., Li, Z., and Liu, B., “A High Power LED Device with Chips Directly Mounted on Heat Pipes,” Applied Thermal Engineering, 66(1), pp. 632-639, 2014.
[50] Snyder, G. J., and Toberer, E. S., “Complex Thermoelectric Materials,” Nature materials, 7(2), pp. 105-114, 2008.
[51] Harman, T. C., Walsh, M. P., and Turner, G. W., “Nanostructured Thermoelectric Materials,” Journal of electronic materials, 34(5), pp. 19-22, 2005.
[52] Bell, L. E., “Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems,” Science, 321(5895), pp. 1457-1461, 2008.
[53] 依日光編著,「熱管技術理論實務」(一版),復漢,2000。
[54] 蘇炎坤,孫慶成,洪瑞華,陳建宇,賴芳儀,呂紹旭,吳孟奇,黃麒甄,梁從主 歐崇仁,林俊良,劉如熹,黃琬瑜,朱紹舒,郭文凱,謝其昌,「LED工程師基礎概念與應用」(初版),五南,2012。
[55] 葉祐良、盧彥碩、光灼華,致冷晶片用於高功率LED散熱之影響,中國機械工程學會第三十屆全國學術研討會論文集,2013。
[56] Turnes, M. J., Clough, R. W., Martin, H. C., and Topp, J. L., “Stiffness and Deflection Analysis of Complex Structures,” Journal of Aeronautical Science, 23(9), pp. 805-824, 1956.
[57] Pooyoo, N., Kumar, S., Charoensuk, J., and Suksangpanomrung, A., “Numerical Simulation of Cylindrical Heat Pipe Considering non-Darcian Transport for Liquid Flow inside Wick and Mass Flow Rate at Liquid–vapor Interface,” International Journal of Heat and Mass Transfer, 70, pp.965-978, 2014.
[58] Rujano, J. R., Cardenas, R., Rahman, M. M., and Moreno, W. A., “Development of a Thermal Management Solution for a Ruggedized Pentium Based Notebook Computer,” IEEE The 6th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp. 8-14, 1998.
[59] Legierski, J., and Wiecek, B., “Steady State Analysis of Cooling Electronic Circuits Using Heat Pipes.” IEEE Transactions on Components and Packaging Technologies, 24(4), pp. 549-553, 2001.
[60] 宋小鹿、韋光、文建國、蔡德芳、過振,熱管在LD端面泵浦固體激光器散熱系統中的應用,上海交通大學學報,第43卷第3期,2009。
[61] 王榆文,平板式熱管微流道液壓成型之研究與熱性能測試,碩士論文,國立交通大學機械工程學系,新竹,2013。
[62] Pérez-Aparicio, J. L., Taylor, R. L., and Gavela, D., “Finite Element Analysis of Nonlinear Fully Coupled Thermoelectric Materials,” Computational Mechanics, 40(1), pp. 35-45, 2007.
[63] Zhu, W., Deng, Y., Wang, Y., and Wang, A., “Finite Element Analysis of Miniature Thermoelectric Coolers with High Cooling Performance and Short Response Time.” Microelectronics Journal, 44(9), pp. 860-868, 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code