Responsive image
博碩士論文 etd-0718114-181355 詳細資訊
Title page for etd-0718114-181355
論文名稱
Title
以粗殼粒子動力學與密度泛函理論預測液晶分子系統的相態變化、光學行為和介電性質
Prediction on the phase transform, optical and dielectric properties of liquid crystal molecule system by coarse grained molecular dynamics simulation and density functional theory calculation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-18
繳交日期
Date of Submission
2014-08-18
關鍵字
Keywords
相態行為、光學性質、粗殼粒子分子動力學模擬、密度泛函理論計算、液晶分子、介電性質
DFT calculation, Dielectric properties, Coarse-grained molecular dynamics simulation, Phase behavior, Optical properties, Liquid crystals
統計
Statistics
本論文已被瀏覽 5826 次,被下載 550
The thesis/dissertation has been browsed 5826 times, has been downloaded 550 times.
中文摘要
本論文將結合粗殼粒子(coarse grained, CG)分子動力學(molecular dynamics, MD)模擬與密度泛函理論(density functional theory, DFT)計算提出一個預測液晶分子系統的相態行為、光學和介電性質的流程。4-Cyano-4′-pentylbiphenyl (5CB)是早期最著名被合成的液晶分子,它有著豐富的相關文獻和現有的實驗與理論數據,所以選擇5CB作為發展設計新型液晶分子流程的基準。根據Maier-Meier和Vuks理論公式,我們需要得到液晶分子的偶極矩、極化率、秩序參數和分子的密度等材料參數才能計算液晶分子系統的光學和介電性質。因此,我們建立5CB分子的粗殼粒子模型並分別找出它們之間的鍵長、鍵角和凡得瓦力的作用力參數,並且找到一組合適的勢能函數,再藉由粗殼粒子分子動力學模擬,研究5CB分子系統的相態變化並得到它的秩序參數和分子密度;利用密度泛函理論計算5CB分子的偶極矩和極化率,上述求得的參數將代入理論公式計算並預測介電常數、介電異向性、折射率和折射率異向性等液晶性質。另外,我們發現介電性質的預測結果能夠透過Dunmur-Palffy-Muhoray理論所提出的有效偶極矩修正而大幅改善。最後,將預測結果與實驗值相互比較證明我們的模擬流程是可行且準確的。
Abstract
We combine coarse grained (CG) molecular dynamics simulation and density functional theory (DFT) calculation to predict the phase behavior, the dielectric and the optical properties of liquid crystal molecule system. 4-Cyano-4′-pentylbiphenyl (5CB) is the earliest synthesized and the most popular liquid crystal molecule, which have prosperous related bibliographies and available experimental and theoretical data, so 5CB molecule is chosen to be the benchmark molecule. According to the Maier-Meier and Vuks equations, we have to obtain some parameters such as the dipole moment, the polarizability, the polarizability anisotropy, the order parameter and the molecular density to calculate dielectric and optical properties of liquid crystal molecule system. The CG model for the 5CB molecules is constructed, and the bond length, bending angle and nonbonded interaction parameters between CG beads, and then applied to the CGMD simulation to obtain the order parameter and molecular density. In addition, the polarizability and dipole moment of 5CB were obtained by DFT; therefore, the order parameter, the molecular density, the polarizability, and the dipole moment of 5CB were used to determine the dielectric constant, the dielectric anisotropy, refractive indices, and optical anisotropy by means of the Maier-Meier theory. Particularly, the calculation results from Maier-Meier theory can be improved by using effective dipole moment of the Dunmur-Palffy-Muhoray theory. Finally, our results show a good agreement with the experimental results, and it indicates that our simulation method is feasible and the results are accuracy.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖次 viii
表次 x
第一章 緒論 1
1.1 研究背景及目的 1
1.2 液晶的種類 3
1.3 液晶的性質 6
1.4 文獻回顧 8
1.4.1 實驗文獻 8
1.4.2 理論模擬文獻 9
1.5 本文架構 11
第二章 模擬方法與理論介紹 12
2.1 分子動力學 12
2.1.1 勢能函數 12
2.1.2 運動方程式 14
2.1.3 積分法則 14
2.1.4 系綜 15
2.1.5 壓力修正Souza-Martins 15
2.1.6 溫度修正Nosé-Hoover-Langevin (NHL) 16
2.1.7 分子動力學流程圖 18
2.2 粗殼粒子理論 19
2.2.1 勢能函數 19
2.2.2 波茲曼反轉換方法流程圖 21
2.3 密度泛函理論 22
2.3.1 多粒子系統薛丁格方程式 22
2.3.2 Born-Oppenheimer絕熱近似 23
2.3.3 Hohenberg-Kohn理論 23
2.3.4 Kohn-Sham方程式 25
2.3.5 交換相關能之近似-(LDA、GGA) 26
2.4 ONSAGER理論 29
2.5 MAIER-MEIER理論 30
第三章 數值模擬方法 32
3.1 週期性邊界 32
3.2 鄰近原子表列法 33
3.2.1 截斷半徑法 33
3.2.2 維理(Verlet)表列法 34
3.2.3 巢室(Cell Link)表列法 35
3.2.4 維理表列法結合巢室表列法 36
3.3 方向秩序參數(ORIENTATIONAL ORDER PARAMETER) 37
第四章 結果分析與討論 38
4.1 5CB液晶分子結構模擬 38
4.1.1 勢能函數分析 40
4.1.2 相態行為分析 50
4.2 密度泛函理論計算結果分析 52
4.3 光學與介電性質分析 53
4.3.1 有效偶極矩 53
4.3.2 藉由有效偶極矩再次分析介電性質 56
第五章 結論與未來展望 57
5.1 結論 57
5.2 未來展望 58
參考文獻 59
參考文獻 References
[1] T. Elze and T. G. Tanner, "Temporal Properties of Liquid Crystal Displays: Implications for Vision Science Experiments," Plos One, vol. 7, Sep 2012.
[2] S. A. Bukesov, N. V. Nikishin, A. O. Dmitrienko, S. L. Shmakov, and J. M. Kim, "Electrophysical characteristics and low-energy cathodoluminescence of vacuum fluorescent display and field emission display screens," Journal of Vacuum Science & Technology B, vol. 16, pp. 2082-2085, Jul-Aug 1998.
[3] T. F. Wu, C. C. Chen, and W. F. Hsu, "Design and development of driving waveforms for AC plasma display panels," Ieee Transactions on Plasma Science, vol. 31, pp. 272-280, Apr 2003.
[4] R. Withnall, J. Silver, P. G. Harris, T. G. Ireland, and P. J. Marsh, "AC powder electroluminescent displays," Journal of the Society for Information Display, vol. 19, pp. 798-810, Nov 2011.
[5] H. E. P. Lagroix, M. R. Yanko, and T. M. Spalek, "LCDs are better: Psychophysical and photometric estimates of the temporal characteristics of CRT and LCD monitors," Attention Perception & Psychophysics, vol. 74, pp. 1033-1041, Jul 2012.
[6] H. Yoshikawa, T. Yamaguchi, T. Ito, and H. Ozawa, "Floating image display with a fine pixel pitch computer-generated hologram," Optical Engineering, vol. 51, Apr 2012.
[7] D. C. Tseng, Y. C. Lee, and C. E. Shie, "LCD MURA DETECTION WITH MULTI-IMAGE ACCUMULATION AND MULTI-RESOLUTION BACKGROUND SUBTRACTION," International Journal of Innovative Computing Information and Control, vol. 8, pp. 4837-4850, Jul 2012.
[8] M. Menozzi, F. Lang, U. Napflin, C. Zeller, and H. Krueger, "CRT versus LCD: effects of refresh rate, display technology and background luminance in visual performance," Displays, vol. 22, pp. 79-85, Jul 2001.
[9] S. Woo, D. H. Kim, Y. S. Han, and B. D. Choi, "Full-Color LCD Microdisplay System Based on OLED Backlight Unit and Field-Sequential Color Driving Method," International Journal of Photoenergy, 2011.
[10] 松本正一, "液晶之基礎與應用," 台灣復文興業出版, 2001.
[11] D. Andrienko, "Introduction to liquid crystals," MODELLING OF SOFT MATTER, 2006.
[12] S. Chakraborty and A. Mukhopadhyay, "Optical and dielectric properties of the mesogen 4-cyano-4′-n–octyl biphenyl as a function of temperature," Phase Transitions, vol. 79, pp. 201-212, 2006/03/01 2006.
[13] K. Yokota, T. Shioda, M. Nakata, Y. Takanishi, K. E. N. Ishikawa, H. Takezoe, M. Ishitobi, and C. Sekine, "Experimental determination of molecular polarizability anisotropy of nematogens by depolarized Rayleigh light scattering," Liquid Crystals, vol. 30, pp. 697-700, 2003/06/01 2003.
[14] P. Holstein, M. Bender, P. Galvosas, D. Geschke, and J. Karger, "Anisotropic diffusion in a nematic liquid crystal- An electric field PFG NMR approach," Journal of magnetic resonance (San Diego, Calif. : 1997), vol. 143, pp. 427-430, 2000.
[15] J. S. Gwag, J. C. Kim, T. H. Yoon, and S. J. Cho, "Effect of polyimide layer surfaces on pretilt angles and polar anchoring energy of liquid crystals," Journal of Applied Physics, vol. 100, Nov 2006.
[16] E. Somma, C. Chi, B. Loppinet, J. Grinshtein, R. Graf, G. Fytas, H. W. Spiess, and G. Wegner, "Orientation dynamics in isotropic phases of model oligofluorenes: glass or liquid crystal," J Chem Phys, vol. 124, p. 204910, 2006.
[17] S. Yimaz and A. Bozkurt, "Spectroscopic measurement of liquid crystal anisotropy in the ultraviolet/visible region," Materials Chemistry and Physics, vol. 107, pp. 410-412, Feb 2008.
[18] N. J. Mottram, C. M. Care, and D. J. Cleaver, "Control of the nematic-isotropic phase transition by an electric field," Physical Review E, vol. 74, Oct 2006.
[19] S. Jaradat, P. D. Brimicombe, C. Southern, S. D. Siemianowski, E. DiMasi, M. Osipov, R. Pindak, and H. F. Gleeson, "Unexpected field-induced phase transitions between ferrielectric and antiferroelectric liquid crystal structures," Physical Review E, vol. 77, Jan 2008.
[20] Y. T. Kim, S. Hwang, J. H. Hong, and S. D. Lee, "Alignment layerless flexible liquid crystal display fabricated by an imprinting technique at ambient temperature," Applied Physics Letters, vol. 89, Oct 2006.
[21] K. Takekoshi, K. Ema, H. Yao, Y. Takanishi, J. Watanabe, and H. Takezoe, "Appearance of a liquid crystalline nematic-isotropic critical point in a mixture system of rod- and bent-shaped molecules," Physical Review Letters, vol. 97, Nov 2006.
[22] A. Jakli, G. Liao, I. Shashikala, U. S. Hiremath, and C. V. Yelamaggad, "Chirality and polarity transfers between bent-core smectic liquid-crystal substances," Physical Review E, vol. 74, Oct 2006.
[23] F. Mercuri, S. Paoloni, U. Zammit, F. Scudieri, and M. Marinelli, "Strain effects at the hexatic-B-smectic-A transition in the 65OBC liquid crystal," Physical Review E, vol. 74, Oct 2006.
[24] I.-S. Baik, S. Y. Jeon, S. J. Jeong, S. H. Lee, K. H. An, S. H. Jeong, and Y. H. Lee, "Local deformation of liquid crystal director induced by translational motion of carbon nanotubes under in-plane field," Journal of Applied Physics, vol. 100, pp. 074306-074306-5, 2006.
[25] S. A. Jewell and J. R. Sambles, "Dynamic response of a dual-frequency chiral hybrid aligned nematic liquid-crystal cell," Physical Review E, vol. 73, Jan 2006.
[26] K. Yokota, T. Shioda, M. Nakata, Y. Takanishi, K. Ishikawa, and H. Takezoe, "Experimental determination of molecular polarizability anisotropy of nematogens by depolarized Rayleigh light scattering," Liquid Crystals, vol. 30, pp. 697-700, Jun 2003.
[27] D. Demus and T. Inukai, "QUANTUM CHEMICAL CALCULATIONS IN INDUSTRIAL LIQUID CRYSTAL RESEARCH," Molecular Crystals and Liquid Crystals, vol. 400, pp. 39-58, 2003/01/01 2003.
[28] D. Demus and T. Inukai, "Calculation of molecular, dielectric and optical properties of 4 '-n-pentyl-4-cyano-biphenyl (5CB)," Liquid Crystals, vol. 26, pp. 1257-1266, Sep 1999.
[29] R. Zhang, J. He, Z. H. Peng, and L. Xuan, "Calculating the dielectric anisotropy of nematic liquid crystals: a reinvestigation of the Maier-Meier theory," Chinese Physics B, vol. 18, pp. 2885-2892, Jul 2009.
[30] S. H. Simpson, R. M. Richardson, and S. Hanna, "Calculation of the birefringences of nematic liquid crystals at optical and infrared wavelengths," The Journal of Chemical Physics, vol. 123, pp. 134904-12, 2005.
[31] M. F. Palermo, A. Pizzirusso, L. Muccioli, and C. Zannoni, "An atomistic description of the nematic and smectic phases of 4-n-octyl-4[prime] cyanobiphenyl (8CB)," The Journal of Chemical Physics, vol. 138, pp. 204901-16, 2013.
[32] G. Prampolini, "Parametrization and Validation of Coarse Grained Force-Fields Derived from ab Initio Calculations," Journal of Chemical Theory and Computation, vol. 2, pp. 556-567, 2006/05/01 2006.
[33] A. J. McDonald and S. Hanna, "Atomistic simulation of a model liquid crystal," Journal of Chemical Physics, vol. 124, Apr 2006.
[34] J. Zhang, J. Su, Y. Ma, and H. Guo, "Coarse-grained molecular dynamics simulations of the phase behavior of the 4-cyano-4'-pentylbiphenyl liquid crystal system," J Phys Chem B, vol. 116, pp. 2075-89, 2012.
[35] J. Zhang and H. Guo, "Transferability of Coarse-Grained Force Field for n CB Liquid Crystal Systems," The Journal of Physical Chemistry B, vol. 118, pp. 4647-4660, 2014.
[36] M. D. Daily, B. N. Olsen, P. H. Schlesinger, D. S. Ory, and N. A. Baker, "Improved Coarse-Grained Modeling of Cholesterol-Containing Lipid Bilayers," Journal of Chemical Theory and Computation, vol. 10, pp. 2137-2150, 2014/05/13 2014.
[37] P. Carbone, H. A. K. Varzaneh, X. Chen, and F. Müller-Plathe, "Transferability of coarse-grained force fields: The polymer case," The Journal of chemical physics, vol. 128, p. 064904, 2008.
[38] J. A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, Jr., J. D.Evanseck, M. J. Field, S. Fischer, J. Gao, H.Guo, S. Ha, D.Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S.Michnick, T. Ngo, D. T. Nguyen, B. Prodhom,W. E. Reiher, III, B.Roux, M. Schlenkrich, J.C.Smith,R.Stote,J.Straub,M.Watanabe,Wio’rkiewicz-Kuczera,D.Yin,M.Karplus. , "All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins," Phys. Chem. B., vol. 102, pp. 3586-3616, 1998.
[39] S. N. a. C. S. N. Chandra, "Local elastic properties of carbon nanotubes in the presence of tone-wales defects," Physical Review B, vol. 69, 2004.
[40] D. R. Hartree, "The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods," Mathematical Proceedings of the Cambridge Philosophical Society, vol. 24, pp. 89-110, 1928.
[41] M. Born and R. Oppenheimer, "Zur Quantentheorie der Molekeln," Annalen der Physik, vol. 389, pp. 457-484, 1927.
[42] P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," Physical Review, vol. 136, pp. B864-B871, 1964.
[43] W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects," Physical Review, vol. 140, p. A1133, 1965.
[44] W. Kohn and L. J. Sham, "Self-Consistent Equations Including Exchange and Correlation Effects," Physical Review, vol. 140, pp. A1133-A1138, 1965.
[45] D. M. Ceperley and B. J. Alder, "Ground State of the Electron Gas by a Stochastic Method," Physical Review Letters, vol. 45, pp. 566-569, 1980.
[46] J. Behari, "Use of a model pseudopotential in the calculation of some electronic properties of lead (solid and liquid states)," Journal of Physics F: Metal Physics, vol. 3, p. 1553, 1973.
[47] R. O. Jones and O. Gunnarsson, "The density functional formalism, its applications and prospects," Reviews of Modern Physics, vol. 61, pp. 689-746, 1989.
[48] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, "Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation," Physical Review B, vol. 46, pp. 6671-6687, 1992.
[49] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Physical Review Letters, vol. 77, pp. 3865-3868, 1996.
[50] B. Hammer, L. B. Hansen, and J. K. Nørskov, "Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals," Physical Review B, vol. 59, pp. 7413-7421, 1999.
[51] A. D. Becke, "Density-functional exchange-energy approximation with correct asymptotic behavior," Physical Review A, vol. 38, pp. 3098-3100, 1988.
[52] M. Klasen, M. Bremer, A. Gotz, A. Manabe, S. Naemura, and K. Tarumi, "Calculation of optical and dielectric anisotropy of nematic liquid crystals," Japanese Journal of Applied Physics Part 2-Letters, vol. 37, pp. L945-L948, Aug 1998.
[53] A. Fujita, M. Ushioda, H. Takeuchi, T. Inukai, and D. Demus, "Calculation of Dielectric and Optical Anisotropy of Nematic Cyanoethylene and Cyanobutadiene Derivatives," Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, vol. 331, pp. 305-313, 1999/08/01 1999.
[54] J. Hoffmann, "Extension of Maier-Meier model on cholesteric liquid crystals," Acta Physica Polonica A, vol. 105, pp. 373-381, Apr 2004.
[55] M. Wojcik and M. Tachiya, "Accuracies of the empirical theories of the escape probability based on Eigen model and Braun model compared with the exact extension of Onsager theory," Journal of Chemical Physics, vol. 130, Mar 2009.
[56] D. C. Rapaport, "The art of molecular dynamics simulation," Cambridge University Press: London, 1997.
[57] D. Frenkel and B. Smit, "Computer simulation of liquids," Academic Press: San Diego, 1991.
[58] D. Frenkel and B. Smit, "Understanding molecular simulation," Academic Press: San Diego, 1996.
[59] M. I. Capar and E. Cebe, "Molecular dynamic study of the odd-even effect in some 4-n-alkyl-4′-cyanobiphenyls," Physical Review E, vol. 73, p. 061711, 2006.
[60] P. Karat and N. Madhusudana, "Elastic and optical properties of some 4′-n-alkyl-4-cyanobiphenyls," Molecular Crystals and Liquid Crystals, vol. 36, pp. 51-64, 1976.
[61] P. G. Cummins, D. A. Dunmur, and D. A. Laidler, "The Dielectric Properties of Nematic 44′ n-pentylcyanobiphenyI," Molecular Crystals and Liquid Crystals, vol. 30, pp. 109-123, 1975/01/01 1975.
[62] D. Demus and T. Inukai, "Quantum chemical calculations in industrial liquid crystal research," Molecular Crystals and Liquid Crystals, vol. 400, pp. 39-58, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code