Responsive image
博碩士論文 etd-0718114-224527 詳細資訊
Title page for etd-0718114-224527
論文名稱
Title
低溫玻璃螢光體製程應用於高演色性及高可靠度白光發光二極體
The Fabrication of Low Temperature Glass Phosphor for High CRI and High Reliability WLEDs
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-16
繳交日期
Date of Submission
2014-08-18
關鍵字
Keywords
演色性、相關色溫、流明、可靠度測試、量子效率、色座標
CIE, Luminescence, CCT, CRI, QY, Reliability test
統計
Statistics
本論文已被瀏覽 5718 次,被下載 166
The thesis/dissertation has been browsed 5718 times, has been downloaded 166 times.
中文摘要
本實驗利用多種螢光粉均勻摻雜於鈉玻璃(Multi-Phosphor-doped Glass, MPGD)作為色轉換層,成功開發高演色性(Color Rendering Index, CRI)及高可靠度(Reliability)之玻璃螢光體。實驗中針對MPDG的光學性質和微結構進行研究,利用YAG的黃色螢光粉(Y3AlO12 : Ce3+)、LuAG的綠色螢光粉(Lu3Al5O12 : Ce3+)以及Nitride的紅色螢光粉(CaAlClSiN3 : Eu2+)分別在680℃、700℃、750℃下燒結成玻璃螢光體,研究發現黃色與綠色玻璃螢光體在不同溫度下燒結可保持相同的量子效率(Quantum Yield, QY)68%,然而紅色玻璃螢光體的量子效率卻隨著溫度的上升從原本的47%大幅降低至5%,在高溫燒結時,低溫玻璃會擴散到螢光粉晶體中,使用場發射型穿透式電子顯微鏡(TEM)可以清楚的看到隨著燒結的溫度越高會導致更厚的擴散層,並且有更多的低溫玻璃擴散進氮化物晶體中,利用能量散佈分析儀(Energy Dispersive System, EDS)的元素分析,在較高溫度的燒結下,碳原子在擴散層中的比例會越高,這表示氮化物螢光粉與低溫玻璃混合後在越高的溫度下燒結會有更多的碳化物產生而嚴重降低紅色玻璃螢光體的量子效率。
利用多種螢光粉(黃色、綠色、紅色)的摻雜比例為0:4:1,在680℃燒結成玻璃螢光體,搭配發光波長445nm的藍光LED作為激發光源,其QY達51%,使用此為色轉換層的白光發光二極體(WLED),其色座標(Color Coordinator)和相關色溫(Correlated Color Temperature, CCT)為(0.317, 0.315;6336K),CRI可達90,符合美國能源之星規定室內照明其演色性必須大於80的規範。並且在150℃和250℃經過1008小時的可靠度測試證明高演色性玻璃螢光體的流明損失小於傳統矽膠螢光體的5倍以及10倍,可取代傳統色轉換層應用於高功率WLED,因此本研究高演色性玻璃螢光體白光發光二極體未來應用在固態照明系統上具有很大的潛力。
Abstract
In this study, we used multi-phosphor-doped sodium glass (MPDG) as color conversion layer, and successfully developed glass phosphor with high color rendering index (CRI) and high reliability. We study the optical properties and microstructure of MPDG in this experiment. We used yellow phosphor of YAG based (Y3AlO12 : Ce3+), green phosphor of LuAG based (Lu3Al5O12 : Ce3+), and red phosphor of nitride based (CaAlClSiN3 : Eu2+) sintering to be glass phosphor at 680℃, 700℃ and 750℃, respectively. The study indicates that the yellow and green glass phosphor can keep the same quantum yield (QY) at different sintering temperature. However, the QY of red glass phosphor is significantly reduced with rising temperature.
The reason of the lowering QY of red glass phosphor can be explained by microstructure analysis when sintered at high temperature, the low temperature glass will diffuse into the phosphor crystal. Field-Emission Transmission Electron Microscope (FE-TEM) clearly shows that the higher sintering temperature induces thicker diffusion layer and more diffusion into phosphor crystal. Element analysis by Energy Dispersive System (EDS) reveals that, for red glass phosphor, higher percentage of carbon atoms in the diffusion layer under high sintering temperature, indicating more carbide was produced at higher temperature in the mixture of nitride phosphor and glass. The carbide severely lowered the quantum yield of the red glass phosphors.
Employing multi-phosphor (yellow, green, red) with doping concentration 0:4:1, and sintered at 680℃. Using a blue LED 445nm of wavelength as pumping source. The QY reaches 51%. The Color Coordinator and Correlated Color Temperature (CCT) of white light emitting diode (WLED) with them as color conversion layer is (0.317, 0.315;6336K). The CRI is up to 90, which meets the regulations of U.S. Energy Star that the CRI for interior lighting must exceed 80. The luminescence loss of glass phosphor is 5 to 10 space times lower than the traditional silicone phosphor under the 1008 hours reliability test under 150℃ and 250℃, respectively, which has great potential in lighting system.
目次 Table of Contents
中文論文審定書 i
英文論文審定書 ii
致謝 iii
摘要 iv
Abstract v
內容目錄 vii
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1 前言 1
1.2 研究背景與動機 2
第二章 原理與介紹 7
2.1 LED元件發光原理 7
2.2 白光LED原理 10
2.3 螢光粉發光原理 12
2.3.1 螢光粉之組成 13
2.4 斯托克位移 (Stokes shift) 14
2.5 熱淬滅效應 (Thermal quenching effect) 15
2.6 色彩學 16
2.6.1 視覺敏感度 16
2.6.2 CIE色度座標圖 18
2.6.3 色溫 (Color temperature, K) 25
2.6.4 演色係數 (Color rendering index, CRI) 26
第三章 實驗方法與製程 30
3.1 低溫玻璃製程 30
3.2 高演色性玻璃螢光體製程 33
3.3矽膠螢光體製程 38
3.4 量測儀器與原理 40
3.4.1場發射型掃描式電子顯微鏡 (FE-SEM) 40
3.4.2 能量散佈分析儀 (EDS) 42
3.4.3 場發射型穿透式電子顯微鏡 (FE-TEM) 44
3.4.4 熱差分析儀 (DTA) 46
3.4.5 螢光光譜儀 (PLE) 47
3.4.6 積分球 (Integrating Sphere) 49
3.5 可靠度測試 (Reliability Test) 52
第四章 結果與討論 55
4.1玻璃螢光體激發與放光光譜 55
4.2 玻璃螢光體微結構分析 57
4.3 高演色性玻璃螢光體 61
4.4 可靠度測試 66
4.4.1 高溫加速老化 66
4.4.2 恆溫恆濕試驗 75
4.5 高演色性玻璃螢光體改進 79
第五章 結論與未來展望 82
5.1 結論 82
5.2 未來展望 83
參考文獻 84
參考文獻 References
[1] 王筱珊、陳韋廷、劉如熹,”發光二極體用之螢光粉熱特性探討”,光連雙月刊,2013年5月,No.105,第70-74頁。
[2] 劉偉仁、姚中業、黃建豪、鍾淑茹、金風,”LED螢光粉封裝技術”,五南出版 (2014)。
[3] Shunsuke Fujita, Satoru Yoshihara, Akihiko Sakamoto, Shigeru Yamamoto, Setsuhisa Tanabe, ”YAG glass-ceramic phosphor for white LED (I): background and development”, Proc. of SPIE, vol.5941, pp.1-7 (2005).
[4] Sih-Etsu chemical, KE-2500/KER-260, http://www.silicone.jp/ (2006).
[5] Y. Masayuki and A. Yoshiyuki, Glass for Photonics, (ISBN 0-521-58053-6), United Kingdom: Cambridge University (2000).
[6] ENERGY STAR Program Requirements for Integral LED Lamps Partner Commitments (2009)
[7] Shunsuke Fujita, Akihiko Sakamoto, and Setsuhisa Tanabe, “Luminescence Characteristics of YAG Glass–Ceramic Phosphor for White LED”, IEEE Journal of Selected Topics in Quantum Electronics,vol.14, no.5, pp.1387-1391 (2008).
[8] Hiroyo Segawa, Hisato Yoshimizu, Naoto Hirosaki and Satoru Inoue,” Fabrication of silica glass containing yellow oxynitride phosphor by the sol–gel process”, Science And Technology of Advanced Materials,12,pp.1-5 (2011).
[9] Hiroyo Segawa, Satoshi Ogata, Naoto Hirosaki, Satoru Inoue, Tadashi Shimizu, Masataka Tansho, Shinobu Ohki, Kenzo Deguchi,” Fabrication of glasses of dispersed yellow oxynitride phosphor for white light-emitting diodes”, Optical Materials, 33, pp.170–175 (2010).
[10] Yl Kwon Lee, Jin Seok Lee, Jong Heo, Won Bin Im, and Woon Jin Chung,” Phosphor in glasses with Pb-free silicate glass powders as robust color-converting materials for white LED applications,” Optics Letters,vol.37, no.15 ,pp. 3276-3278 (2012).
[11] Liang Yang, Mingxiang Chen, Zhicheng Lv, Simin Wang, Xiaogang Liu, and Sheng Liu, “Preparation of a YAG:Ce phosphor glass by screen-printing technology and its application in LED packaging,” Optics Letters, vol.38, no.13, pp. 2240-2243 (2013).
[12] Li-Yin Chen, Wei-Chih Cheng, Chun-Chin Tsai, Yi-Chung Huang, Yen-Sheng Lin and Wood-Hi Cheng, “High-performance glass phosphor for white-light-emitting diodes via reduction of Si-Ce3+:YAG inter-diffusion,” OSA Optical Material Express, vol.4, no.1, pp.121-128 (2014).
[13] Li-Yin Chen, Wei-Chih Cheng, Chun-Chin Tsai, Jin-Kai Chang, Yi-Chung Huang, Jhih-Ci Huang, and Wood-Hi Cheng, “Novel broadband glass phosphors for high CRI WLEDs”, OSA Optical Express, vol. 22, no.s3, pp.a671-a678 (2014).
[14] 張鼎張 ”半導體元件物理”,國立中山大學物理系。
[15] 陳繼弘 ”低溫玻璃螢光體製程及均勻度分析”,國立中山大學光電工程學系,碩士論文 (2012)。
[16] 黃乾祐 ”以固態鋁源合成釔鋁石榴石螢光粉及其特性之研究”,國立臺北科技大學材料及資源工程研究所,碩士論文 (2006)。
[17] E. F. Schubert, Light-Emitting Diodes, 2nd ed., Cambridge University Press, Cambridge (2006).
[18] 洪瑞華、陳建宇、賴芳儀、呂紹旭、吳孟奇、黃麒甄、梁從主、歐崇仁、林俊良、劉如熹、黃琬瑜、朱紹舒、郭文凱、謝其昌, “LED工程師基礎概念與應用”, 五南出版(2012)。
[19] 王書任、林仁鈞,”讓LED發光的功臣-螢光粉”,科學發展,2009年3月,435期,第22-26頁。
[20] 湯友聖 ”發光二極體之螢光材料及其封裝特性分析”,國立臺灣師範大學光電科技研究所,碩士論文 (2008)。
[21] 原著:大田登;編譯:陳鴻興、陳詩涵, “色彩工程學:理論與應用”, 全華出版 (2008)。
[22] 林昆範, “色彩原論”, 全華出版 (2005)。
[23] 胡國瑞、孫沛立、徐道義、陳鴻興、黃日鋒、詹文鑫、羅梅君, “顯示色彩工程學”, 全華出版 (2009)。
[24] S. Muthu, F. J. P. Schuurmans and M. D. Pashley, “Red, green, and blue LEDs for White Light illumination,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 8 (2002).
[25] C. M. Chang, Y. C. Fang and C. R. Lee, “A new design mixing R.G.B. LED (Red, Green, Blue Light Emitting Diode) for a modern LCD (Liquid Crystal Display) backlight system”, Proceedings of SPIE, vol.6338 (2006).
[26] 楊淑慧, “LED產業新版圖”, 財訊出版 (2006)。
[27] 劉俊顯 “同色度玻璃螢光體與矽膠色轉換層之可靠度試驗暨平均壽命預測”, 國立中山大學光電工程學系,碩士論文 (2011)。
[28] S.Geller, “Crystal chemisty of the garnets”, Z.Kristallographie-Crystalline Materials, vol. 125, no. 125, pp. 1-47 (1967).
[29] 柯韋志、陳奕光、粘群、林皇羽、林芳宇、曾敬媛、盧弘毅、王博漢、羅英豪、陳維翔,"化學與光電"。
[30] 林盈君 “混和氮化物類高演色性螢光膠白光LED光學特性的探討”, 國立中山大學光電工程學系,碩士論文 (2009)。
[31] 邱標麟, “玻璃製造學”, 復文書局 (2002)。
[32] W. H. Zachariasen, “The atomic arrangement in glass”, J. Am. Chem. Soc., vol. 54, issue 10, pp.3841-3851 (1932).
[33] Wei-Chih Cheng, Chun-Chin Tsai, Jin-Kai Chang, Shun-Yuan Huang, Ji-Hung Chen, Shi-Sheng Hu, Yi-Chung Huang, Wood-Hi Cheng, “Fabrication of Low-Temperature Ce3+:YAG Doped Glass for Phosphor-Converted White-Light-Emitting Diodes”, OECC 17th, pp.603-604 (2012).
[34] J.T. Randall, H.P. Rooks and B.S. Cooper, “Atomic Physics and Related Subjects : Communications to Nature : The Diffraction of X-Rays by Vitreous Solids and its Bearing on their Constitution”, Nature, vol. 125, pp.458 (1930).
[35] S.M. Ohlberg, J.J. Hammel, “Phenomenology of Noncrystalline Microphase Separation in Glass”, American Ceramic Society, vol. 48, issue 4, pp.178-180 (1965).
[36] SEM/EDS構造與原理探討
http://acade.must.edu.tw/upfiles/ADUpload/c23_downmul1209823853.pdf
[37] Radiological & Environmental Management, Purdue University.
http://www.purdue.edu/rem/rs/sem.htm
[38] 國立中山大學貴重及共用儀器中心
http://khvic.nsysu.edu.tw/khvic/HVIC/index.htm
[39] 半導體故障分析技術,
http://brighter.myweb.hinet.net/
[40] W. M. Yen, S. Shionoya and H. Yamamoto, “Phosphor handbook”, CRC Press, Boca Raton (2006).
[41] A. H. Kitai, “Solid State Luminescence”, Chapman & Hall (1993).
[42] K. D. Mielenz, “Optical Radiation Measurement”, Academic Press (1982).
[43] L. Porres, A. Holland, L. O. Palsson, A. P. Monkman, C. Kemp and A. Beeby, “Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere”, Journal of Fluorescence, vol. 16, issue 2, pp.267-272 (2006).
[44] 沈宜佳, “矽酸鹽螢光粉之量子效率量測與精確光學模型”, 國立中央大學碩士論文 (2009)。
[45] S. Fujita, A. Sakamoto, and S. Tanabe, “Luminescence Characteristics of YAG Glass–Ceramic Phosphor for White LED”, IEEE Journal of Selected Topics In Quantum electronics, vol. 14, no. 5, pp.1387-1391 (2008).
[46] JEDEC, http://www.jedec.org/
[47] 劉如熹, “白光發光二極體製作技術”, 全華出版 (2008)。
[48] 胡希聖 ”利用溶膠凝膠法披覆二氧化矽奈米薄膜於Ce3+:YAG螢光粉應用於玻璃螢光體之研究”,國立中山大學光電工程學系,碩士論文 (2013)。
[49] 許鎮鵬, “高功率LED 封裝與晶圓級封裝技術簡介”, 自動化科技學會會刊06 (2009)。
[50] 陳隆建, “發光二極體之原理與製程”, 全華出版 (2010)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code