Responsive image
博碩士論文 etd-0718114-224909 詳細資訊
Title page for etd-0718114-224909
論文名稱
Title
利用染料摻雜液晶製作可光切換之偏振分光鏡
Photo-Switchable Polarizing Beam Splitter based on Dye-Doped Liquid Crystals
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
129
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-15
繳交日期
Date of Submission
2014-08-19
關鍵字
Keywords
偶氮染料、偏振分光鏡、全反射、光切換、液晶
liquid crystal, photo-switchable, total internal reflection, polarizing beam splitter, azo-dye
統計
Statistics
本論文已被瀏覽 5678 次,被下載 319
The thesis/dissertation has been browsed 5678 times, has been downloaded 319 times.
中文摘要
偏振分光鏡的主要功用是分開兩種線偏振態(s波與p波)的傳播方向,對於液晶顯示、光通訊、光儲存及其他光學系統來說是很重要的元件。本研究使用兩個高折射率稜鏡(n = 1.778)及一光敏感液晶夾層(ne = 1.7126; no = 1.5287)來製作可切換分光功能的偏振分光鏡。此偏振分光鏡的工作機制為:當光由密介質(稜鏡)傳播到疏介質(液晶)時,若入射角大於特定角度即產生全反射。藉由液晶雙折射的特性,使得s波與p波分別在液晶層感受到不同的折射率而造成不同的臨界角。因此,當光以特定角度入射,兩個偏振將會被分開來。利用在液晶中摻雜光敏感偶氮染料,即可藉由照光來改變液晶秩序性,藉以調控入射光感受之有效折射率,達到切換此偏振分光鏡的分光功能。偶氮液晶染料―1205在紫光(λ = 404 nm)的照射下,其分子從反式(trans)變成順式(cis),會擾動排列規律的液晶分子,使液晶介質層的折射率從原本的雙折射性(ne/no)變為各向同性(niso),此時s波和p波經偏振分光鏡後的傳播路徑相同,即偏振分光功能被關閉。而在綠光(λ = 532 nm)的照射下,染料分子將從順式(cis)變為反式(trans),液晶層的折射率將切換回雙折射性狀態,此時s波和p波經偏振分光鏡後便可分開至不同傳播方向。此一光控染料分子的型態變化為可逆的,且兩個狀態穩定時間長,皆可視為穩態,因此我們成功地製作出一可光切換且雙穩態的偏振分光鏡。此元件除了具可調控及節能的優點外,還能藉由照光區域的選擇來進行不同區域的調控,使得在往後的應用上元件設計更加簡單且富有變化。
Abstract
Polarizing beam splitters (PBSs) split the orthogonal s and p polarizations of the incident light. They are of considerable importance in many optical systems including liquid crystal displays (LCDs), optical communications and optical storage devices. In this study, we aimed to design an active PBS by sandwiching a dye-doped liquid crystal thin layer (ne = 1.7126; no = 1.5287) between two high-index prisms (nprism = 1.778). The working principle of PBS is as follows: As a ray of light propagates from an optically denser medium to a rarer one at an angle larger than a particular critical angle, it is entirely reflected. Such phenomenon is called “total internal reflection”. The birefringence nature of the liquid crystal leads to different critical angles for s-wave and p-wave respectively. Thereby, at a certain angle, the incident light will be divided into two rays with different linear polarizations. In conjunction with an azobenzene dye, the orientational order of the liquid crystal can be optically controlled and so can the effective indices. Under violet irradiation (λ = 404 nm), the azo-dye 1205 experiences an isothermal transition from trans- to cis-state resulting in a phase transition from the nematic to isotropic state; whereas the back-isomerization process can be exerted by green irradiation (λ = 532 nm). Such switching is reversible and bistable. Hence, a photo-switchable and energy-conserving PBS was demonstrated. Moreover, this device can be locally addressed by a spatially modulated pump, which simplifies and enriches the design for further applications.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iii
圖錄 vii
表錄 xii
第一章 緒論 1
第二章 液晶簡介 2
2-1液晶的發現 2
2-2何謂液晶 2
2-3液晶分類 3
2-3.1向列相 4
2-3.2膽固醇相 4
2-3.3層列相 7
2-4液晶的物理特性 9
2-4.1溫度對秩序參數的影響 10
2-4.2折射率異向性 11
2-4.3介電係數異向性 13
2-4.4彈性連續體理論 14
2-4.5黏滯係數 15
第三章 理論介紹 17
3-1折射定理(Snell’s law) 17
3-2 菲涅爾方程式(Fresnel equations) 18
3-3反射率和穿透率(Reflectance and Transmittance) 21
3-4全內反射(Total internal reflection) 23
3-5光致同素異構化反應(Photo–isomerization) 25
3-6光致等溫相變(Light–induced isothermal phase transition) 25
第四章 實驗設計與模擬 27
4-1選擇適合作為偏振分光鏡的稜鏡 28
4-1.1稜鏡折射率 28
4-1.2稜鏡形狀 30
4-2選擇適合作為偏振分光鏡的偶氮染料 34
4-3設計偏振分光鏡中液晶層之配向 35
4-3.1水平配向方式 35
4-3.2垂直配向方式 36
4-4計算在不同入射角θ1之T、R 37
4-5模擬液晶折射率改變過程中所對應之T、R 44
4-6液晶層厚度對偏振分光鏡之影響 46
4-7相變過程中出射光之位移或角度改變 48
第五章 實驗方法與過程 51
5-1比較光敏感材料之特性 52
5-1.1材料介紹 52
5-1.2藥品配製 54
5-1.3元件製作過程 54
5-1.4實驗架設 57
5-2光敏感材料之折射率量測 59
5-2.1元件製作過程 59
5-2.2實驗架設 61
5-3偏振分光鏡之特性量測 63
5-3.1元件製作過程 63
5-3.2實驗架設 63
第六章 實驗結果與討論 67
6-1光敏感材料之特性分析 67
6-1.1染料濃度對相變點的影響 67
6-1.2染料濃度對相變時間的影響 69
6-1.3激發光強度對相變時間的影響 73
6-1.4染料濃度對相變溫寬的影響 76
6-1.5染料濃度對在室溫下維持各向同性相之影響 77
6-2不同入射角對偏振分光鏡之影響 78
6-2.1 找出光敏感材料的折射率 78
6-2.2 找出適當的入射角範圍 80
6-3偏振分光鏡之光控特性分析 83
6-3.1照光切換相態過程中的偏振分光情況 84
6-3.2激發光之偏振對切換偏振分光鏡過程的影響 90
6-3.3連續切換偏振分光鏡測耐用性 94
6-3.4不同相態下之偏振分光程度 96
6-3.5偏振分光鏡之穩定性 101
6-3.6照光變化過程中光損耗原因 102
6-3.7偏振分光鏡在相變過程中之光強度振盪原因 105
第七章 結論 111
參考資料 113
參考文獻 References
[1] L. Li, J. A. Dobrowolski, B. T. Sullivan and Z. Pang, “Novel Thin Film Polarizing Beam-splitter and Its Application in High Efficiency Projection Displays,” Proc. of SPIE 3634, 52–62 (1999).
[2] X. Yang, Y. Yan and G. Jin, “Polarized light-guide plate for liquid crystal display,” Opt. Express 13, 8349–8356 (2005).
[3] K. Takizawa, T. Fujii, T. Sunaga and K. Kishi, “Three-dimensional large-screen display with reflection-mode spatial light modulators and a single-projection optical system: analysis of a retardation-modulation method,” Appl. Opt. 37, 6182–6195 (1998).
[4] J. Chen, M. G. Robinson and G. D. Sharp, “High contrast MacNeille PBS based LCOS projection systems,” Proc. of SPIE 5740, 76–87 (2005).
[5] S. Eckhardt, C. Bruzzone, D. Aastuen and J. Ma, “3M PBS for High Performance LCOS Optical Engine,” Proc. Of SPIE 5002, 106–110 (2003).
[6] Y. Ma, Q. Yang, Y. Tang, S. Chen and W. Shieh, “428-Gb/s single-channel coherent optical OFDM transmission over 960-km SSMF with constellation expansion and LDPC coding,” Opt. Express 18, 16883–16889 (2010).
[7] S. Gräf, G. Staupendahl, C. Seiser, B.-J. Meyer and F. A. Müller, “Generation of a dynamic polarized laser beam for applications in laser welding,” J. Appl. Phys. 107, 043102 (2010).
[8] J. N. Damask, “ Polarization Optics in Telecommunications,” Springer, New York (2005).
[9] C. H. Lee, Y. Chiu and H. P. D. Shieh, “High-extinction-ratio micro polarizing beam splitter for short wavelength optical storage applications,” Opt. Express 13, 10292–10301 (2005).
[10] E. Hecht, “OPTICS 4th ed.” Addison Wesley, San Francisco (2002).
[11] B. Sun, M. Y. Chen, Y. K. Zhang and J. Zhou, “An ultracompact hybrid plasmonic waveguide polarization beam splitter,” Appl. Phys. B 113, 179-183 (2013)
[12] X. Guan, H. Wu, Y. Shi, L. Wosinski and D. Dai, “Ultracompact and broa dBand polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire,” Opt. Lett. 38, 3005–3008 (2013)
[13] B. Wang, L. Chen, L. Lei and J. Zhou, “Enhancement of the Efficiency Based on a Sandwiched Grating for Separating Polarized Beams,” IEEE Pho. Tech. Lett. 24, 1513–1515 (2012)
[14] H. Cao, C. Zhou, J. Feng and P. Lv, “Gold wire-grid grating used as polarizing beam splitter,” IEEE, Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics (2009)
[15] T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney and M. Mansuripur, “Design of a Compact Photonic-Crystal-Based Polarizing Beam Splitter,” IEEE Pho. Tech. Lett. 17, 1435–1437 (2005)
[16] D. R. Solli, C. F. McCormick, R. Y. Chiao and J. M. Hickmann, “Photonic crystal polarizers and polarizing beam splitters,” J. Appl. Phy. 93, 9429 (2003)
[17] V. Zabelin, L. A. Dunbar, N. Le Thomas and R. Houdré, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32, 530–532 (2007)
[18] F. Reinitzer, “Beitage zur Kenntniss des Cholesterins,” Monatcsh. Chem. 9, 421–441 (1888).
[19] S. Singh and D. A. Du nmur, “Liquid Crystal:Fundamentals,” World Scientific, Singapore (1990)
[20] 田民波 著,林怡欣 校訂,《 TFT液晶顯示原理與技術》,五南圖書出版公司,民國97年。
[21] L. M. Blinov and V. G. Chigrinov, “Electro-optic Effects in Liquid Crystal Materials,” New York: Springer-Verlag (1994)
[22] 陳怡欣,《染料摻雜液晶之雙光效應對相變溫度影響之研究及其應用》,碩士論文,國立成功大學物理研究所,民國96年。
[23] P. J. Collings and M. Hird, “Introduction to Liquid Crystals Chemistry and Physics,” Taylor&Francis Ltd, Hampshire (1997)
[24] I. C. Khoo and S. T. Wu, “Optics and Nonlinear Optics of Liquid Crystals,” World Scientific, Singapore (1993)
[25] A. Yariv, “Optical Electronics in Modern Communications,” Oxford University Press, New York (1997)
[26] A. Yariv, “Optical Electronics,” Wiley, New York (1997)
[27] 姚裕馨,《液晶與共振腔發光二極體整合之波長可調紅外光源之研究》,碩士論文,國立中山大學光電工程學系研究所,民國101年。
[28] P. J. Collings and M. Hird, “Introduction to Liquid Crystals Chemistry and Physics,” Taylor&Francis Ltd, Hampshire (1997)
[29] 耿繼業、何建娃 著,《幾何光學》,民國96年。
[30] T. V. Galstyan, B. Saad and M. M. Denariez-Roberge, “Excitation transfer from azo dye to nematic host during photoisomerization,” J. Chem. Phys. 107, 9319 (1997)
[31] C. V. Yelamaggad, S. K. Prasad and Q. Li, “Liquid Crystals Beyond Display:Chemistry, Physics,and Applications,” Wiley, Canada, Chap.5 (2012)
[32] J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng and S. T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21, 7870–7877 (2011)
[33] http://www.beamco.com/component/content/article/2-uncategorised/4-products
[34] J. Li, S. Gauza and S. T. Wu, “Temperature effect on liquid crysatl refractive indices,” J. Appl. Phys. 96, 19–24 (2004)
[35] K. J. Kuhn, “Laser Engineering,” Prentice Hall, USA (1998)
[36] C.-R. Lee and S.-Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express 18, 25896–25905 (2010).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code