Responsive image
博碩士論文 etd-0718115-113540 詳細資訊
Title page for etd-0718115-113540
論文名稱
Title
結合Fabry-Pérot干涉儀與Mach-Zehnder干涉儀之雙干涉儀光纖感測器
Bi-Interferometer Fiber Sensor Formed by Combining Fabry-Pérot Fiber Interferometer and Mach-Zehnder Fiber Interferometer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-08-17
繳交日期
Date of Submission
2015-08-19
關鍵字
Keywords
Fabry-Pérot干涉儀、Mach-Zehnder干涉儀、雙干涉儀、光纖感測器
fiber sensor, Fabry-Pérot interferometer, Mach-Zehnder interferometer, bi-interferometer
統計
Statistics
本論文已被瀏覽 5780 次,被下載 296
The thesis/dissertation has been browsed 5780 times, has been downloaded 296 times.
中文摘要
由於光在光纖中傳播容易受到外界環境變化所影響,因此近年來光纖被製作成各種微型感測器,但光纖感測器往往對多種物理量皆有反應,因此當外界的變化因素較複雜時,我們將無法由頻譜的改變來推知每一種環境參數的變化量。本論文提出結合Fabry-Pérot干涉儀與Mach-Zehnder干涉儀之雙干涉儀光纖感測器,我們利用化學濕蝕刻將單模光纖蝕刻出錐狀微型孔洞,然後與光子晶體光纖熔接形成Fabry-Pérot干涉儀的空氣共振腔,再將光子晶體光纖與另一段單模光纖錯位熔接,利用空氣共振腔與錯位結構形成Mach-Zehnder干涉儀的兩個光耦合區域。當蝕刻時間增加時,我們會得到較大的空氣共振腔,並可在反射Fabry-Pérot干涉頻譜上觀察到愈小的干涉頻譜間距。而當蝕刻時間大於8分鐘,空氣共振腔所形成的耦合面積也足夠大而能夠同時激發光子晶體光纖的纖殼模態與纖芯模態,便可在穿透頻譜觀察到明顯的Mach-Zehnder干涉結果。
我們將所製作的雙干涉儀光纖感測器進行折射率、張力及溫度的特性感測,並進一步探討元件對雙參數的感測能力。我們得到Fabry-Pérot干涉儀與Mach-Zehnder干涉儀在環境折射率1.3330與1.3902之間時,對環境折射率的敏感度分別為0nm/RIU與58.37nm/RIU。當張力在0με與500με之間時,敏感度分別為4.71pm/με與2.76pm/με。且由於元件為全矽與空氣結構,兩者皆對溫度不靈敏。我們進一步將雙干涉儀光纖感測器元件運用在張力與環境折射率的雙參數感測,藉由改變不同的張力及環境折射率,並將觀察到的頻譜變化作換算,發現量測到的環境參數值與實際值大致相符,其中張力與環境折射率的誤差分別為13.9με與0.0023。
Abstract
Optical fibers have been widely applied in micro sensors in recent years due to they are sensitive to the variations of environment. Among all the optic-fiber sensors, combination of an interferometer fiber sensor and a fiber Bragg grating is the most common structure for simultaneously measuring two or more parameters. In this thesis, we propose a bi-interferometer fiber sensor which integrates a Fabry-Pérot fiber interferometer (FPFI) and a Mach-Zehnder fiber interferometer (MZFI) by splicing an etched single mode fiber with a cleaved photonic crystal fiber to form an air cavity and introducing a misalignment between the photonic crystal fiber and another cleaved single mode fiber.
We have presented the sensing properties of the bi-interferometer fiber sensor for refractive index (RI), strain and temperature. The RI sensitivities of the FPFI and MZFI between 1.333 and 1.3902 are 0nm/RIU and 58.37nm/RIU, respectively. The strain sensitivities of the FPFI and MZFI between 0με and 500με are 4.71pm/με and 2.76pm/με, respectively. In addition, the sensor is insensitive to temperature because of the all silica and air structure. We have also demonstrated the property of the sensor for simultaneous measurement of the refractive index and strain. The error of strain and refractive index sensing are 13.9με and 0.0023. As a result, we have successfully realized a compact fiber sensor for two-parameter sensing.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1-1 光纖的發展與基本原理 1
1-2 干涉儀式光纖感測器 3
1-3 研究動機 11
第二章 Mach-Zehnder光纖干涉儀與Fabry-Pérot光纖干涉儀 13
2-1 Mach-Zehnder干涉儀 13
2-2 Mach-Zehnder光纖干涉儀 14
2-3 Fabry-Pérot干涉儀[52] 18
2-4 Fabry-Perot光纖干涉儀 24
第三章 雙干涉儀光纖感測器的製作 26
3-1 雙干涉儀光纖感測器的設計 26
3-2 溼化學蝕刻 31
3-3 元件製作方法 33
第四章 雙干涉儀光纖感測器的基本特性量測 38
4-1 元件量測架設 38
4-2 氫氟酸蝕刻響應 40
4-3 元件量測結果與討論 42
4-3.1 坍塌結構討論 42
4-3.2 錯位結構討論 44
4-3.3 空氣共振腔大小對元件頻譜的影響 45
第五章 雙干涉儀光纖感測器的感測特性量測 49
5-1 折射率感測特性 50
5-2 張力感測特性 54
5-3 溫度感測特性 57
5-4 雙參數感測分析 59
第六章 結論 64
參考文獻 65
參考文獻 References
[1] D. J. Sterling and L. Chartrand, Technician’s Guide to Fiber Optics(Cengage Learning Publisher, 2004), pp. 4-6.
[2] T. Y. Hu, Y. Wang, C. R. Liao, and D. N. Wang, “Miniaturized fiber in-line Mach-Zehnder interferometer based on inner air cavity for high-temperature sensing,” Opt. Lett., vol. 37, pp. 5082-5084, 2012.
[3] M. Cano-Contreras, A. D. Guzman-Chavez, R. I. Mata-Chavez, E. Vargas-Rodriguez, D. Jauregui-Vazquez, D. Claudio-Gonzalez, J. M. Estudillo-Ayala, R. Rojas-Laguna, and E. Huerta-Mascotte, “All-fiber curvature sensor based on an abrupt tapered fiber and a Fabry-Pérot interferometer,” IEEE Photon. Technol. Lett., vol. 26, pp. 2213-2216, 2014.
[4] Z. Qiang, Z. Tao, Z. Jingdong, and C. Kin Seng, “Micro-fiber-based FBG sensor for simultaneous measurement of vibration and temperature,” IEEE Photon. Technol. Lett., vol. 25, pp. 1751-1753, 2013.
[5] L. M. Hu, C. C. Chan, X. Y. Dong, Y. P. Wang, P. Zu, W. C. Wong, W. W. Qian, and T. Li, “Photonic crystal fiber strain sensor based on modified Mach-Zehnder interferometer,” IEEE Photon. J., vol. 4, pp. 114-118, 2012.
[6] J. Eom, C.-J. Park, B. H. Lee, J.-H. Lee, I.-B. Kwon, and E. Chung, “Fiber optic Fabry-Pérot pressure sensor based on lensed fiber and polymeric diaphragm,” Sens. Actuators A, vol. 225, pp. 25-32, 2015.
[7] S. Hao, Z. Xiaolei, Y. Liutong, Z. Libin, Q. Xueguang, and H. Manli, “An optical fiber Fabry-Pérot interferometer sensor for simultaneous measurement of relative humidity and temperature,” IEEE Sens. J., vol. 15, pp. 2891-2897, 2015.
[8] J. Fan, J. Zhang, P. Lu, M. Tian, J. Xu, and D. Liu, “A single-mode fiber sensor based on core-offset inter-modal interferometer,” Opt. Commun., vol. 320, pp. 33-37, 2014.
[9] A. Cipullo, G. Gruca, K. Heeck, F. De Filippis, D. Iannuzzi, A. Minardo, and L. Zeni, “Numerical study of a ferrule-top cantilever optical fiber sensor for wind-tunnel applications and comparison with experimental results,” Sens. Actuators A, vol. 178, pp. 17-25, 2012.
[10] D. Lesnik and D. Donlagic, “In-line, fiber-optic polarimetric twist/torsion sensor,” Opt. Lett., vol. 38, pp. 1494-1496, 2013.
[11] R. Gao, Y. Jiang, and S. Abdelaziz, “All-fiber magnetic field sensors based on magnetic fluid-filled photonic crystal fibers,” Opt. Lett., vol. 38, pp. 1539-1541, 2013.
[12] J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “A fiber strain and vibration sensor based on high birefringence polarization maintaining fibers,” Opt. Commun., vol. 322, pp. 105-108, 2014.
[13] W.-H. Tsai, K.-C. Lin, S.-M. Yang, Y.-C. Tsao, and P.-J. Ho, “Fiber-optic surface plasmon resonance-based sensor with AZO/Au bilayered sensing layer,” Chin. Opt. Lett., vol. 12, p. 042801, 2014.
[14] T. Schuster, R. Herschel, N. Neumann, and C. G. Schaffer, “Miniaturized long-period fiber grating assisted surface plasmon resonance sensor,” J. Lightw. Technol., vol. 30, pp. 1003-1008, 2012.
[15] S. Pevec and D. Donlagic, “Nanowire-based refractive index sensor on the tip of an optical fiber,” Appl. Phys. Lett., vol. 102, p. 213114, 2013.
[16] G. Yuan, Z. Tian, R. Yun-Jiang, and W. Yu, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett., vol. 23, pp. 679-681, 2011.
[17] S. Delepine-Lesoille, J. Bertrand, L. Lablonde, and X. Pheron, “Distributed hydrogen sensing with Brillouin scattering in optical fibers,” IEEE Photon. Technol. Lett., vol. 24, pp. 1475-1477, 2012.
[18] X. Yang, A. S. P. Chang, B. Chen, C. Gu, and T. C. Bond, “High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber,” Sens. Actuators B, vol. 176, pp. 64-68, 2013.
[19] P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett., vol. 30, pp. 1273-1275, 2005.
[20] J. Villatoro, D. Monzón-Hernández, and D. Talavera., “High resolution refractive index sensing with cladded multimode tapered optical fibre,” Electron. Lett., vol. 40, pp.106-107, 2004.
[21] E. Cibula, S. Pevec, B. Lenardic, E. Pinet, and D. Donlagic, “Miniature all-glass robust pressure sensor,” Opt. Express, vol. 17, pp. 5098-5106, 2009.
[22] Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B, vol. 27, pp. 370-374, 2010.
[23] H. Yu, L. Xiong, Z. Chen, Q. Li, X. Yi, Y. Ding, F. Wang, H. Lv, and Y. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng., vol. 56, pp. 50-53, 2014.
[24] L. Xu, L. Jiang, S. Wang, B. Li, and Y. Lu, “High-temperature sensor based on an abrupt-taper Michelson interferometer in single-mode fiber,” Appl. Opt., vol. 52, pp. 2038-2041, 2013.
[25] G. Cárdenas-Sevilla, F. Fávero, and J. Villatoro, “High-visibility photonic crystal fiber interferometer as multifunctional sensor,” Sensors, vol. 13, p. 2349, 2013.
[26] P. Zu, C. C. Chan, G. W. Koh, W. S. Lew, Y. Jin, H. F. Liew, W. C. Wong, and X. Dong, “Enhancement of the sensitivity of magneto-optical fiber sensor by magnifying the birefringence of magnetic fluid film with Loyt-Sagnac interferometer,” Sens. Actuators B, vol. 191, pp. 19-23, 2014.
[27] C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, C. Lu, and H.-Y. Tam, “In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer,” Opt. Lett., vol. 38, pp. 3283-3286, 2013.
[28] W. Qian, C.-L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett., vol. 36, pp. 1548-1550, 2011.
[29] Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett., vol. 32, pp. 2662-2664, 2007.
[30] R. Gao, Y. Jiang, W. Ding, Z. Wang, and D. Liu, “Filmed extrinsic Fabry-Pérot interferometric sensors for the measurement of arbitrary refractive index of liquid,” Sens. Actuators B, vol. 177, pp. 924-928, 2013.
[31] W. H. Tsai and C. J. Lin, “A novel structure for the intrinsic Fabry-Pérot fiber-optic temperature sensor,” J. Lightw. Technol., vol. 19, pp. 682-686, 2001.
[32] L. X. Chen, X. G. Huang, J. Y. Li, and Z. B. Zhong, “Simultaneous measurement of refractive index and temperature by integrating an external Fabry-Pérot cavity with a fiber Bragg grating,” Rev. Sci. Instrum., vol. 83, p. 053113, 2012.
[33] C. Yin, Z. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. Zhen, and B. Yu, “Temperature-independent ultrasensitive Fabry-Pérot all-fiber strain sensor based on a bubble-expanded microcavity,” IEEE Photon. J., vol. 6, pp. 1-9, 2014.
[34] P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araujo, and O. Frazao, “intrinsic Fabry-Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J., vol. 12, pp. 8-12, 2012.
[35] C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Pérot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express, vol. 20, pp. 22813-22818 ,2012.
[36] L. H. Chen, C. C. Chan, R. Menon, P. Balamurali, W. C. Wong, X. M. Ang, P. B. Hu, M. Shaillender, B. Neu, P. Zu, Z. Q. Tou, C. L. Poh, and K. C. Leong, “Fabry-Pérot fiber-optic immunosensor based on suspended layer-by-layer (chitosan/polystyrene sulfonate) membrane,” Sens. Actuators B, vol. 188, pp. 185-192, 2013.
[37] M. Jiang, Q.-S. Li, J.-N. Wang, W.-G. Yao, Z. Jin, Q. Sui, J. Shi, F. Zhang, L. Jia, and W.-F. Dong, “Optical response of fiber-optic Fabry-Pérot refractive-index tip sensor coated with polyelectrolyte multilayer ultra-thin films,” J. Lightw. Technol., vol. 31, pp. 2321-2326, 2013.
[38] F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, L. Lu, and B. Yu, “High-sensitivity Fabry-Pérot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett., vol. 37, pp. 133-135, 2012.
[39] J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor with graphene diaphragm,” Opt. Lett., vol. 37, pp. 2493-2495, 2012.
[40] D. W. Duan, Y. J Rao, Y. S. Hou, and T. Zhu, “Microbubble based fiber-optic Fabry-Pérot interferometer formed by fusion splicing single-mode fibers for strain measurement,” Appl. Opt., vol. 51, pp. 1033-1036, 2012.
[41] J. Lou, L. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express, vol. 13, pp. 2135-2140, 2005.
[42] N. Takat , T. Kominato , A. Sugita , K. Jinguji , H. Toba and M. Kawachi, “Silica-based integrated optic Mach-Zehnder multi/demultiplexer family with channel spacing of 0.01-250 nm,” IEEE J. Select Areas Commun., vol. 8, pp.1120 -1127 1990.
[43] L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett., vol. 36, pp. 3753-3755, 2011.
[44] J. J. Zhu, A. P. Zhang, T. H. Xia, S. He and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J., vol. 10, pp. 1415-1418, 2010.
[45] W. Chen, S. Lou, L. Wang, S. Feng, H. Zou, W. Lu, and S. Jian, “In-fiber modal interferometer based on dual-concentric-core photonic crystal fiber and its strain, temperature and refractive index characteristics,” Opt. Commun., vol. 284, pp. 2829-2834, 2011.
[46] R. C. Haskell, D. Liao, A. E. Pivonka, T. L. Bell, B. R. Haberle, B. M. Hoeling, and D. C. Petersen, “Role of beat noise in limiting the sensitivity of optical coherence tomography,” J. Opt. Soc. Am. A, vol. 23, pp. 2747-2755, 2006.
[47] Z. Tian, S. S. H. Yam, and H.-P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett., vol. 33, pp. 1105-1107, 2008.
[48] J. Villatoro, V. Finazzi, G. Badenes, and V. Pruneri, “Highly sensitive sensors based on photonic crystal fiber modal interferometers,” J. Sens., vol. 2009, pp. 1-11, 2009.
[49] Y. Xin, X. Dong, Q. Meng, F. Qi, and C.-L. Zhao, “Alcohol-filled side-hole fiber Sagnac interferometer for temperature measurement,” Sens. Actuators A, vol. 193, pp. 182-185, 2013.
[50] R. Yang, Y. S. Yu, C. Chen, Y. Xue, X. L. Zhang, J. C. Guo, C. Wang, F. Zhu, B. L. Zhang, Q. D. Chen, H. B. Sun, “S-tapered fiber sensors for highly sensitive measurement of refractive index and axial strain,” J. Lightw. Technol., vol. 30, pp. 3126-3132, 2012.
[51] Y. Cao, H. Liu, Z. Tong, S. Yuan, and J. Su, “Simultaneous measurement of temperature and refractive index based on a Mach-Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Commun., vol. 342, pp. 180-183, 2015.
[52] F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to Optics(Pearson Education Publisher, 2006), pp. 184-204.
[53] S. Jiang, B. Zeng, Y. Liang, and B. Li, “Optical fiber sensor for tensile and compressive strain measurements by white-light Fabry–Pérot interferometry,” Opt. Eng., vol. 46, pp. 034402-034402-6, 2007.
[54] C. L. Lee, M. Li, J. M. Hsu, J. S. Horng, W. Y. Sung and C. M. Li “Microcavity fiber Fabry-Pérot interferometer with an embedded golden thin film,” IEEE Photon.Technol. Lett., vol. 25, pp.833-836, 2011.
[55] Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Pérot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express, vol. 16, pp. 2252-2263, 2008.
[56] S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Pérot interferometer,” Opt. Lett., vol. 39, pp. 2121-2124, 2014.
[57] F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Pérot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express, vol. 20, pp. 7112-7118, 2012.
[58] M. Tian, P. Lu, L. Chen, D. Liu, and M. Yang, “Micro multicavity Fabry-Pérot interferometers sensor in SMFs machined by femtosecond laser,” IEEE Photon. Technol. Lett., vol. 25, pp. 1609-1612, 2013.
[59] H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express, vol. 15, pp. 5711-5720, 2007.
[60] G. Latha and P. Nair, “Commercial solid core photonic crystal fibers for sensing,” in COMSOL Conference, Bangalore, 2014.
[61] F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to Optics (Pearson Education Publisher, 2006), pp. 498.
[62] X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol., vol. 20, pp.255 -266, 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code