Responsive image
博碩士論文 etd-0718115-133157 詳細資訊
Title page for etd-0718115-133157
論文名稱
Title
盲孔法殘留應力預估公式之探討
A Study on the Residual Stress Estimation Formula of Blind Hole Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
139
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-23
繳交日期
Date of Submission
2015-08-18
關鍵字
Keywords
殘留應力、盲孔法、最小平方法
least square method, residual stress, blind-hole method
統計
Statistics
本論文已被瀏覽 5694 次,被下載 27
The thesis/dissertation has been browsed 5694 times, has been downloaded 27 times.
中文摘要
本研究主要在利用有限元素法,模擬、分析現有盲孔法用於預估銲道殘留應力之精度限制,並可能改善之方法。論文中採用有限元素套裝軟體MSC.Marc之熱─彈塑耦合模式,配合有限元素之active 與inactive 元素功能,模擬鎳基690 合金平板,經電弧銲熔填I‐52 銲條,冷卻後於銲道域產生之殘留應力與應變場分布。並藉由有限元素inactive 功能,模擬鑽孔效應,利用鑽孔邊緣之應變變化配合現有盲孔法公式,推估原鑽點中心位置之殘留應力值。將其盲孔法預估值與原有有限元素模擬結果進行數值比對,以確認現有盲孔法參數之適用精度與限制。
文中配合有限元素模擬結果,分別探討盲孔法中鑽孔深度、鑽孔半徑、鑽孔距銲道中心點位置距離、應變規配置角度以及應變規與盲孔中心距離,諸參數對殘留應力推估精度之影響。本論文中亦利用最小平方法,提出修正後之盲孔法無因次參數值,以改善盲孔法在殘留應力量測上的精度。模擬結果顯示,本論文提出之無因次係數群,將有效提升盲孔法在殘留應力的預估精度與適用性範圍。
Abstract
In this study, the accuracy of blind hole method on weld residual stress estimation is investigated. A modified parameter group has also proposed to improve the accuracy. The thermal-elastic-plastic finite element model is employed to build up the residual stress distribution and the blind hole process. The Marc Finite Element software package is used to simulate the welding process and the welding residual stress and strain distributions around the weld of two inconel 690 alloy plates filled with I-52 GTAW filler. Then the process of the traditional blind hole is simulated by employing the inactive elements. The data of the residual strain variations of strain gages located around the blind hole is introduced into the blind hole method to estimate the original residual stress components at hole center. The effects of drilling depth, drilling size, gage radius, gage position and the distance on the accuracy of estimated residual stress have also been studied and discussed.
Based on the residual stress components simulated from the welding process, a modified stress parameter group has also been proposed to improve the accuracy of blind hole method. Numerical results indicate the accuracy of estimated residual stress
can be improved significantly by employing the proposed blind hole parameters.
目次 Table of Contents
謝誌 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
符號說明 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 組織章節 5
第二章 基本理論 6
2.1 盲孔法理論 6
2.2 熱傳分析理論 18
2.3 固體力學分析理論 19
2.4 有限元素法分析介紹 21
2.5 牛頓-拉佛森法(Newton-Raphson Method)與收斂判斷 24
2.6 最小平方法 28
第三章 有限元素模型 29
3.1 熱源設定 29
3.2 銲接模型 34
第四章 模擬結果與公式修正 47
4.1 模擬結果 47
4.2 盲孔法 54
4.3 ASTM E 837-01 規範 62
4.4 無因次係數修正 71
4.5 修正結果 78
第五章 參數討論 86
5.1 參數討論 86
5.2 盲孔深度 88
5.3 銲道中心距離及應變規角度 90
5.4 盲孔半徑與應變規佈徑比 93
第六章 結論與未來展望 97
6.1 結論 97
6.2 未來工作 98
參考文獻 99
附錄A 105
參考文獻 References
[1] Leonard Mordfin, Mechanical Relaxation of Residual Stresses, American Society for Testing and Materials, Philadelphia, Pa, 1988.
[2] Weng, C. C. and Lo, S. C., “Measurement of Residual Stress in Welded Steel Joints Using Hole Drilling Method,” Materials Science and Technology, 8, pp.213-219, 1992.
[3] Nobre, J. P., Kornmeier, M., Dias, A. M., and Scholtes, B., “Use of the Hole-drilling Method for Measuring Residual Stresses in Highly Stressed Shot Peened Surfaces,” Experimental Mechanics, 40(3), pp. 289-297, 2000.
[4] Nelson, D. V., “Residual Stress Determination by Hole Drilling Combined with Optical Methods,” Experimental Mechanics, 50(2), pp. 145-158, 2010.
[5] Matejicek, J., Sampath, S., and Dubsky, J., “X-ray Residual Stress Measurement in Metallic and Ceramic Plasma Sprayed Coatings,” Journal of Thermal Spray Technology, 7(4), pp. 489-496, 1998.
[6] Schajer, G. S., “Advances in Hole-Drilling Residual Stress Measurements,” Experimental Mechanics, 50(2), pp. 159-168, 2010.
[7] Annual Book of ASTM Standards, “Standard Test Method for Determining Residual Stresses by the Hole Drilling Strain-Gage Method,” ASTM E 837-01, 2001.
[8] Timoshenko, S. P. and Goodier, J. N., Theory of Elasticity, 3rd edition, McGraw-Hill Book Company, New York, 1986.
[9] Mathar, J., “Determination of Initial Stress by Measuring the Deformation Around Drilled Holes,” Transactions of the American Society of Mechanical Engineers, 56(4), pp. 249-254, 1934.
[10] Soete, W. and Vancrombrugge R., “An Industrial Method for the Determination of Residual Stress,” Proc. SESA, VIII, pp. 17-261, 1950.
[11] Rendler, N. J. and Vigness , I., “Hole-drilling Strain-gage Method of Measuring Residual Stresses,” Proc. SESA, XXIII, pp. 577- 586, 1966.
[12] Lake, B. R., Appl, F. J., and Bert, C. W., “An Investigation of the Hole-drilling Technique for Measuring Planar Residual Stress in Rectangularly Orthotropic Materials,” Experimental Mechanics, 10 (6), pp. 233-239, 1970 .
[13] Schajer, G. S., “Application of Finite Element Calculations to Residual Stress Measurements,” ASME Journal of Engineering Materials and Technology, 103(2), pp. 157-163, 1981.
[14] Niku-Lari, A., Lu, J., and Flavenot, J. F., “Measurement of Residual Stress Distribution by the Incremental Hole-Drilling Method,” Journal of Mechanical Working Technology, 11, pp. 167-168, 1984.
[15] Schajer, G. S. and Altus, E., “Stress Calculation Error Analysis for Incremental Hole-Drilling Residual Stress Measurement,” ASME Journal of Engineering Materials and Technology, 118(1), pp. 120-126, 1996.
[16] Rumzan, I. and Douglas, R. S., “Three-dimensional Stress-relief Displacements from Blind-hole Drilling: a Parametric Description,” Proceedings of the Society for Experimental Mechanics, 43(1), pp. 52-60, 2003.
[17] Kabiri, M., “Measurement of Residual Stresses by the Hole-drilling Method Influences of Transverse Sensitivity of the Gages and Relieved strain,” Experimental Mechanics, 24(3), pp. 252-256, 1984.
[18] Tootoonian, M. and Schajer, G. S., “Enhanced Sensitivity Residual Stress Measurements Using Taper Hole Drilling,” Experimental Mechanics, 35(2), pp. 124-129, 1995.
[19] Schajer, G. S. and Tootoonian, M., “A New Rosette Design for More Reliable Hole-drilling Residual Stress Measurements,” Experimental Mechanics, 37(3), pp. 299-306, 1997.
[20] Nelson, D. V. and McCrickerd, J. T., “Residual-Stress Determination Through Combined Use of Holographic Interferometry and Blind Hole Drilling,” Experimental Mechanics, 26(4), pp. 371-378, 1986.
[21] Focht, G. and Schiffner, K., “Determination of Residual Stresses by an Optical Correlative Hole-drilling Method,” Society for Experimental Mechanics, 43(1), pp. 97-104, 2003.
[22] Sandifer, J. P. and Bowie, G. E., “Residual Stress by Blind hole Method with Off-center Hole,” Experimental Mechanics, 18(5), pp. 173-179, 1978.
[23] 胡永祥,利用低速鑽孔法對304L 不鏽鋼銲接件殘留應力之檢測評估,碩士論文,國立成功大學機械工程學系碩士論文,台南,1993。
[24] 許富銓,應用放電加工鑽孔法量測殘留應力之可行性研究與評估,博士論文,國立成功大學機械工程學系碩士論文,台南,2005。
[25] Schajer, G. S., “Measurement of Non-Uniform Residual Stress Using the Hole-Drilling Method. Part I-Stress Calculation Procedures,” ASME Journal of Engineering Materials and Technology, 110(4), pp. 338-343, 1988.
[26] Schajer, G. S., “Measurement of Non-Uniform Residual Stress Using the Hole-Drilling Method. Part II-Practical Application of the Integral Method,” ASME Journal of Engineering Materials and Technology, 110(4), pp. 344-349, 1988.
[27] Petrucci, G. and Zuccarello, B., “A New Calculation Procedure for Non-uniform
Residual Stress Analysis by the Hole-drilling Method,” Journal of Strain Analysis for Engineering Design, 33(1), pp. 27-37, 1998.
[28] 吉田總仁,彈‧塑性力學基礎,初版,五南圖書,台北,pp. 94-97,2008。
[29] Incropera, DeWitt, Bergmann, and Lavine, Fundamentals of Heat and Mass Transfer, 6th edition, John Wiley & Sons, Asia, 2007.
[30] Lurie, A. I., Theory of Elasticity, Springer, New York, 2005.
[31] Ugural, A. C. and Fenster, S. K., Advanced Strength and Applied Elasticity, 4th edition, Pearson, Taiwan, 2003.
[32] Chankrabarty, J., Theory of plasticity, 3rd edition, Elsevier, 2006.
[33] Meyer, M., Mechanical Behavior of Materials, Cambridge University Press, UK, 2009.
[34] Calister, W., Material Science and Engineering: An Introduction, John Wiley & Sons, USA, 2007.
[35] Turnes M. J., Clough R. W., Martin H. C., and Topp, J. L., “Stiffness and Deflection Analysis of Complex Structures,” Journal of Aeronautical Science, 23(9), pp. 805-824, 1956.
[36] Chandrupatla, T. R., and Belegundu, A. D., Introduction to Finite Elements in Engineering, Pearson, Taipei, 2010.
[37] 邱姵茹,雙雷射束畫線製程應用於薄膜太陽能電池之研究,碩士論文,國立中山大學機械與機電工程研究所,高雄,2013。
[38] 蘇品慎,有限元素法應用於盲孔法之分析與模擬,碩士論文,國立中山大學機械與機電工程研究所,高雄,2010。
[39] Goldak, J., Chakravarti, A., and Bibby, M., “A New Finite Element Model for Welding Heat Sources,”Metallurgical Transactions B, 15(2), pp.299-305, 1984.
[40] 李孟軒,GTAW 與LBW 製程對鎳基690 合金對接銲之殘留應力研究,碩士論文,國立成功大學機械工程學系碩士論文,台南,2007。
[41] 郭聰源,鎳基690 合金銲接特性研究,博士論文,國立成功大學機械工程學系碩士論文,台南,1999。
[42] Masubuchi, K., Analysis of Welded Structures, Pregamon Press, 1980.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code