Responsive image
博碩士論文 etd-0718115-165653 詳細資訊
Title page for etd-0718115-165653
論文名稱
Title
以奈米複合金屬處理受三氯乙烯及六價鉻污染之地下水
Treatment of TCE and Cr(VI) contaminated groundwater using bimetallic nanoparticles
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-22
繳交日期
Date of Submission
2015-08-18
關鍵字
Keywords
奈米金屬懸浮液、六價鉻、奈米零價鐵、奈米複合金屬、化學還原、三氯乙烯、地下水整治
chromium, trichloroethylene, chemical reduction, Bimetallic nanoparticles, Nanoscale zero-valent iron (nZVI), BNPs suspension, groundwater treatment
統計
Statistics
本論文已被瀏覽 5721 次,被下載 0
The thesis/dissertation has been browsed 5721 times, has been downloaded 0 times.
中文摘要
本研究是以奈米級複合金屬進行污染物的降解去除,以土壤地下水中常見之污染物三氯乙烯及六價鉻作為目標污染物進行實驗,奈米金屬於污染物去除研究豐碩,但於實際應用於現地整治時,成本效益與環境衝擊為材料選擇首要考量。實驗中使用的複合金屬是以零價鐵作為核心金屬,對一般使用零價鐵在進行整治時的限制進行改良,主要目的為減少零價鐵作為還原材料投入受污染水體,因與水體接觸造成零價鐵的迅速腐蝕現象並有效提升零價鐵在水體中的長效還原性。
本研究以化學還原方式自行製備鐵/鋁/鎳及鐵/鋁複合金屬,並進行材料元素分析、表面微觀分析及粒徑分析。因地殼及土壤金屬豐富度以鐵鋁為主,研究合成的複合金屬組成比值為鐵鋁比1:1,結果與實驗設計相符,且單一顆粒顆粒粒徑介於88-97奈米間,符合奈米級材料,能提高其反應面積。
實驗以批次試驗進行複合金屬對單一及兩種目標污染物去除的測試,得到初步測試結果,顯示複合金屬對兩種目標污染物皆有去除效果。但與國內外研究文獻相較之下,單一奈米零價鐵去除效果較佳,證實化學還原反應迅速,但應用於地下受污染含水層中,零價鐵易與環境中複雜成分反應而消耗,為了提高材料的長效性與控制現地呈現穩定厭氧環境,於是進行複合金屬的改良,包括改變金屬組成配比和加入酸洗程序。經酸洗液測試後,選擇以對環境衝擊小的檸檬酸進行測試,實驗配置3%、5%及10%檸檬酸溶液作為酸洗液,並添加鐵鋁比值為8:2的複合金屬配置成複合金屬懸浮液。再以此懸浮液進行六價鉻的去除實驗,結果在水中六價鉻濃度大於8000 毫克/升的環境下,金屬懸浮液對六價鉻還原效果為每克複合金屬可還原4.42克六價鉻,而在連續式補注六價鉻去除實驗中,顯示複合金屬懸浮液於重複添加污染物六價鉻的批次試驗下,每克複合金屬能還原0.875克六價鉻,在高濃度六價鉻環境下,其還原機制除物理吸附還原亦包含化學反應沉澱吸附;在連續污染物注入試驗中,可發現複合金屬在長時間試驗下可能與目標污染物以外之微量元素及水反應而消耗,但由單位材料反應結果顯示,不論在高濃度六價鉻(電鍍廢液槽)環境或是應用於現地環境之污染物持續注入實驗,複合金屬的污染物移除效率高。
本研究發現複合金屬在水質環境參數上具有提供酸鹼值緩衝的能力,並可使水體氧化還原電位呈還原態,有利於水中含氯有機物的還原脫氯及重金屬的還原,並進一步生成氫氧化物沉澱,有效移除水中重金屬。另外,在研究中也發現複合金屬可進行污染物去除的酸鹼值範圍較零價鐵廣泛,零價鐵一般而言適合在中性偏酸或酸性環境下進行污染物的去除,在鹼性條件下易在鐵表面生成氫氧化鐵而使還原性減弱,而實驗中複合金屬因在金屬表面有鋁層存在,在金屬表面易形成氫氧化鋁或氧化鋁層,在酸性或鹼性環境下易受強烈腐蝕作用洗去,使具強還原性的零價鋁層裸露以去除污染物,使複合金屬在水中酸鹼值4~9中皆能進行污染物的去除,大大提高了以複合金屬處理污染物的應用性。實驗結果顯示複合金屬顆粒在處理污染物後依然具有磁性,可利用電磁鐵等磁力作用進行回收,處理後的金屬顆粒由酸洗的方式進行複合金屬的再製及進行污染物的再去除。本研究結果可提供未來三氯乙烯或六價鉻污染場址整治技術的參考使用。
Abstract
In this study, Fe-Al bimetallic nanoparticles (Fe-Al BNPs) was designed and applied to treat chromium and trichloroethylene (TCE) contaminated groundwater. Fe-Al BNPs was prepared by the chemical reduction process and the produced BNP had an averaged particle diameter of 88-97 nm.
Batch experiments were conducted to evaluate the efficiency of chromium and TCE removal efficiency with the addition of Fe-Al BNPs. The results show that Fe-Al BNPs can remove both target contaminants and the removal efficiencies for Cr6+ and TCE were 0.07g Fe-Al BNPs and 0.02g TCE/g Fe-Al BNPs, respectively, with the addition of 0.1 g/L of Fe-Al BNPs.
To improve the removal efficiency of Cr 6+ and TCE using Fe-Al BNPs, citric acid (10 wt%) was used to wash Fe-Al BNPs to form Fe-Al BNPs suspension. The suspension was applied for Cr6+ removal. Results of Cr6+ removal ratio was 4.42 g Cr6+/g Fe-Al BNPs with the addition of 1 g/L Fe-Al BNPs in the water contained approximately 8,.000 mg/L of chromium. Complete Cr removal efficiency was obtained with the continuous addition of 1 g/L Fe-Al BNPs.
Trivalent chromium (Cr3+) was detected in the aqueous phase during the Cr6+ removal process. X-Ray Diffractometer (XRD) analysis confirmed that Cr3+ was present on the surface of Fe-Al BNPs. The results of this study show that the application of BNPs can treat chromium and TCE-contaminated groundwater rapidly and effectively. In addition, the reproduced BNPs also had the potential to be reused in the treatment process.
目次 Table of Contents
誌謝 ................................................................................................................................................ i
中文摘要 ....................................................................................................................................... ii
Abstract ........................................................................................................................................iv
目錄 ............................................................................................................................................... v
圖目錄 ......................................................................................................................................... viii
表目錄 ........................................................................................................................................... x
第一章 前言 ................................................................................................................................. 1
1.1研究緣起 ............................................................................................................................. 1
1.2研究目的 ............................................................................................................................. 2
第二章 文獻回顧 ......................................................................................................................... 3
2.1地下水污染 ......................................................................................................................... 3
2.1.1含氯有機物污染概況 .................................................................................................. 3
2.1.2重金屬鉻污染概況 ...................................................................................................... 7
2.2污染物定義及特性 ............................................................................................................. 8
2.2.1三氯乙烯的性質與危害 .............................................................................................. 8
2.2.2鉻的性質與危害 ........................................................................................................ 10
2.2.3國內對兩種污染物現行管制標準 ............................................................................ 13
2.3污染物處理方法回顧 ....................................................................................................... 14
2.3.1水中含氯有機物去除之相關研究 ............................................................................ 14
2.3.2去除水中六價鉻污染之相關研究 ............................................................................ 17
2.4奈米零價鐵 ....................................................................................................................... 21
2.4.1奈米零價鐵的定義與特性 ........................................................................................ 21
2.4.2奈米零價鐵對污染物去除機制 ................................................................................ 22
2.4.3奈米零價鐵的改質 .................................................................................................... 25
2.5奈米複合金屬 ................................................................................................................... 26
2.5.1奈米複合金屬的定義與特性 .................................................................................... 26
2.5.2奈米複合金屬的製備 ................................................................................................ 27
2.5.3奈米複合金屬處理污染物研究回顧 ........................................................................ 31
2.6金屬在水溶液中之存在型態 ........................................................................................... 33
2.6.1鉻與水之 Eh-pH 平衡圖 ......................................................................................... 33
2.6.2鐵與水之 Eh-pH 平衡圖 ......................................................................................... 34
2.6.3鋁與水之 Eh-pH 平衡圖 ......................................................................................... 35
第三章 實驗設備與方法 ........................................................................................................... 36
3.1研究架構 ........................................................................................................................... 36
3.2研究流程 ........................................................................................................................... 37
3.2實驗材料與設備 ............................................................................................................... 38
3.2.1實驗材料 .................................................................................................................... 38
3.2.2實驗設備 .................................................................................................................... 38
3.2奈米金屬的製備 ............................................................................................................... 40
3.2.1奈米零價鐵的製備 .................................................................................................... 40
3.2.2奈米複合金屬的製備 ................................................................................................ 41
3.3污染物批次實驗 ............................................................................................................... 43
3.4複合金屬懸浮液處理Cr6+實驗 ....................................................................................... 45
3.5實驗分析方法 ................................................................................................................... 47
3.5.1金屬成分分析 ............................................................................................................ 47
3.5.2污染物分析 ................................................................................................................ 49
第四章 結果與討論 ................................................................................................................... 51
4.1複合金屬基本特性分析 ................................................................................................... 51
4.1.1鐵鋁鎳複合金屬 ........................................................................................................ 51
4.1.1鐵鋁複合金屬 ............................................................................................................ 56
4.2污染物批次實驗 ............................................................................................................... 61
4.2.1 三氯乙烯實驗組 ....................................................................................................... 62
4.2.2 複合污染物實驗組 ................................................................................................... 65
4.2.3批次試驗結果比較 .................................................................................................... 71
4.3 鐵鋁複合金屬的改良 ...................................................................................................... 72
4.3.1複合金屬金屬組成變更 ............................................................................................ 73
4.3.2酸洗液測試 ................................................................................................................ 74
4.4奈米金屬懸浮液處理高濃度Cr6+實驗 ........................................................................... 76
4.4.1檸檬酸組 .................................................................................................................... 77
4.4.2奈米零價鐵組 ............................................................................................................ 80
4.4.3複合金屬組 ................................................................................................................ 83
4.5奈米金屬處理連續補注Cr6+污染物實驗 ....................................................................... 86
4.5.1奈米零價鐵組 ............................................................................................................ 87
4.5.2複合金屬組 ................................................................................................................ 92
4.6 奈米金屬回收可行性 ...................................................................................................... 97
第五章 結論與建議 ................................................................................................................... 98
5.1結論 ................................................................................................................................... 98
5.2建議 ................................................................................................................................... 99
參考文獻 ................................................................................................................................... 100
參考文獻 References
劉嘉庭,2011,利用乳化型釋碳基質提昇三氯乙烯污染地水之生物降解效率:現  地模場試驗,國立中山大學環境工程研究所碩士論文。
許藝騰,2011,以奈米級零價鐵處理實廠含鉻電鍍廢水之研究,國立暨南國際大
學土木工程研究所碩士論文。
黃宇伶,2013,以長效型基質處理受三氯乙烯污染之地下水,國立中山大學環境工程研究所碩士論文。
王鉦源,2002,以化學還原法製備奈米級銀鈀微粉,國立成功大學化學工程系碩士論文。
簡華逸,2009,應用現地生物整治技術處理受三氯乙烯污染之地下水,國立中山大學環境工程研究所博士論文。
林新惟,徐漢,談駿嵩,2013,奈米金屬粒于於高壓CO2 中之合成與催化反應,超臨界流體技術應用專刊,第60卷,第2期,3-13。
鄭智中,謝偉智,潘文捷,余光昌,2007,以奈米級鐵鎳雙金屬處理水中硝酸鹽之研究,嘉南學報,第33期,130-139。
謝淑惠,2008,綠色奈米技術之開發及應用(複合奈米材料固定化與共處理之研究),行政院環境保護署計畫成果,計畫編號:EPA-96-U1U1-02-105。
蔡在唐,高志明,2009,奈米零價鐵在地下環境介質之傳輸與應用,台灣土壤及地下水環境保護協會簡訊,第32期,29-41。
劉敏信,簡鈺銘,陳柏諺,李冠賢,2013,以濕式化學合成法搭配分散劑製備零價金屬降解水中五氯酚鈉之研究,2013綠色科技工程與應用研討會(GTEA),論文編號:GT8-008。
林建宇,2011,分散性奈米鐵和鈀/鐵雙金屬粒子降解四氯乙烯之研究,國立屏東科技大學環境工程與科學系碩士學位論文。
行政院環境保護署,2011,土壤污染管制標準,環署土字第1000008495號令。
行政院環境保護署,2013,地下水污染管制標準,環署土字第1000010141號令。
行政院環境保護署,2008,土壤及地下水受比水重非水相液體污染場址整治技術選取系統設計要點與注意事項參考手冊。
行政院環境保護署,2011,土壤及地下水重金屬與無機陰離子污染物污染場址之整治技術選取、系統設計要點與操作維護注意事項參考手冊。
行政院環境保護署,2014,列管毒性化學物質及其運作管理事項。
行政院環保署土壤及地下整治網,2015,國內土壤及地下水場址列管情形,(http://sgw.epa.gov.tw/public/0401.asp)。
行政院環境保護署,2014,飲用水水質標準,環署毒字第 1030001229 號令
經濟部工業局,2006,重金屬土壤及地下水污染預防與整治技術手冊。
經濟部工業局,2005,金屬表面處理業土壤及地下水預防與整治技術手冊。
經濟部工業局,2011,產業節水與水再生技術手冊。
行政院勞委會,2014,勞工作業場所容許暴露標準,勞職授字第10302007931號令。
國家毒物研究中心,2014,國家環境毒物研究中心整理口服六價鉻毒性資料。
李中光,劉新校,侯佳蕙,2013,淺談電鍍廢水處理,桃園縣大學校院產業環保技術服務團環保簡訊,第20期。
李中光,劉新校,邱惠敏,2014,重金屬廢水處理技術之進展,桃園縣大學校院產業環保技術服務團環保簡訊,第23期。
李文善,連興隆,2004,鐵含量對鐵鋁複合金屬於還原脫氯作用影響之探討,第十六屆中華民國環境工程年會,計畫編號:NSC 93-2211-E-390-006。
郭清癸,黃俊傑,牟中原,2001,金屬奈米粒子的製造,物理雙月刊,23卷,6期。
Agamemnon Koutsospyros, Julius Pavlov, Jacqueline Fawcett, David Strickland, Benjamin Smolinski, Washington Braida (2012) Degradation of high energetic and insensitive munitions compounds by Fe/Cu bimetal reduction, Journal of Hazardous Materials, 219-220, 75-81.
Alok D. Bokare, Rajeev C. Chikate, Chandrashekhar V. Rode, Kishore M. Paknikar (2007) Effect of surface chemistry of Fe-Ni nanoparticles on mechanistic pathways of azo dye degradation, Environmental Science & Technology, 41, 7437–7443.
Baruthio.F (1992) Toxic effects of chromium and its compounds, Biological Trace Element Research, 32, 145-153.
Bradley, J.S.(1994) The Chemistry of Transition Metal Colloids. In Clusters and Colloids; Schmid, G., Ed., VCH Publishers: New York, NY(USA), 459-537.
Brijesh S. Kadu, Yogesh D. Sathe, Abhijit B. Ingle, Rajeev C. Chikate, Kashinath R. Patil, Chandrashekhar V. Rode (2011) Efficiency and recycling capability of montmorillonite supported Fe–Ni bimetallic nanocomposites towards hexavalent chromium remediation, Applied Catalysis B: Environmental, 104, 407–414.
C. D. Palmer and P. R. Wittbrodt, (1991)Processes affecting the remediation of chromium-contaminated sites,Environmental Health Perspectives, vol. 92, 25-40.
Ching-Yao Hu, Shang-Lien Lo, Ya-Hsuan Liou, Ya-Wen Hsu, Kaimin Shih, Chin-Jung Lin (2010) Hexavalent chromium removal from near natural waterby copper–iron bimetallic particles, Water Research, 44, 3101-3108.
Choe, S., Lee, S.H., Chang, Y.Y., Hwang, K.Y., Khim, J. (2001) Rapid reductive destruction of hazardous organic compounds by nanpscale Fe0., Chemosphere, 42, 367-372.
Christof M. Niemeyer (2001) Nanoparticles, proteins, and nucleic acids:biotechnology meets materials science, Angewandte Chemie International Edition, 40, 4128- 4158.
Chuan-Bao Wang, Wei-Xian Zhang (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs, Environ. Sci. Technol., 31, 2154-2156.
Cundy A.B., Hopkinson L. (2008) Use of iron-based technologies in contaminated land and groundwater remediation: A review. Science of the Total Environment, 400, 42-51.
Dingsheng Wang, Yadong Li (2011) Bimetallic Nanocrystals: Liquid-Phase Synthesis and Catalytic Applications, Advanced Materials, 23, 1044-1060.
Elliott, D.W., Zhang, W. (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment, Environ. Sci. Technol., 35, 4922-4926.
Glazier, R., Venkatakrishnan, Gheorghiu, F., Walata, L., Nash, R., Zhang, W.X. (2003) Nanotechnology takes root. Civil Eng., 73, 64-69.
Ian Robinson, Stefano Zacchini, Le D. Tung, Shinya Maenosono, Nguyen T. K. Thanh (2009) Synthesis and Characterization of Magnetic Nanoalloys from Bimetallic Carbonyl Clusters, Chemistry of Materials, 21, 3021-3026.
Jan Němeček, Ondřej Lhotský, Tomáš Cajthaml (2014) Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations, Science of the Total Environment, 485-486, 739-747.
Jahangeer Ahmed, Bharat Kumar, Amos M. Mugweru, Phong Trinh, Kandalam V. Ramanujachary, Samuel E. Lofland,Govind, Ashok K. Ganguli (2010) Binary Fe-Co Alloy Nanoparticles Showing Significant Enhancement in ElectrocatalyticActivity Compared with Bulk Alloys, The Journal of Physical Chemistry C, 114, 18779–18784.
Leah J. Matheson, Paul G. Tratnyek (1994) Reductive dehalogenation of chlorinated methanes by iron metal, Environmental Science & Technology, 28, 2045-2053.
Lien, H.L., Zhang, W.X. (2001) Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloid. Surface. 191, 97-105.
Lien, H.L. and W. Zhang.,(2002) Enhanced Dehalogenation of Halogenatedmethanes
by Bimetallic Cu/Al.Chemosphere, 49, 371-378 .
Mallikarjuna N. Nadagouda, Rajender S. Varma (2007) A Greener Synthesis of Core (Fe, Cu)-Shell (Au, Pt, Pd, and Ag)Nanocrystals Using Aqueous Vitamin C, Crystal Growth & Design, Vol.7, No.12, 2582-2587.
Maomin Shi, Zhonghong Li, Yahong Yuan, Tianli Yue, Jianlong Wang, Ronghua Li, Jinghong Chen (2015) In situ oxidized magnetite membranes from 316L porous stainless steel via a two-stage sintering process for hexavalent chromium [Cr(VI)]removal from aqueous solutions, Chemical Engineering Journal, 265, 84-92.
Mario Rivero-Huguet, William D. Marshall (2009) Reduction of hexavalent chromium mediated by micro- and nano-sized mixedmetallic particles, Journal of Hazardous Materials, 169, 1081-1087.
Mar-Yam Sultana, Christos S. Akratos, Stavros Pavlou, Dimitrios V. Vayenas (2014) Chromium removal in constructed wetlands:A review, International Biodeterioration & Biodegradation,96, 181-190.
Michail K. Michailides, Athanasia G. Tekerlekopoulou, Christos S. Akratos, Sandra Coles, Stavros Pavlou, Dimitrios V. Vayenas (2015) Molasses as an efficient low-cost carbon source for biological Cr(VI)removal, Journal of Hazardous Materials, 281, 95–105.
Milton Villacís-Garcíaa, Mario Villalobosa, Margarita Gutiérrez-Ruiz (2014) Optimizing the use of natural and synthetic magnetites with verysmall amounts of coarse Fe(0) particles for reduction of aqueousCr(VI), Journal of Hazardous Materials, 281, 77-86.
Mohamed E. Mahmoud (2015) Water treatment of hexavalent chromium by gelatin-impregnatedyeast (GeleYst) biosorbent, Journal of Environmental Management, 147, 264-270.
Runhu Zhang, Hongzhu Ma, Bo Wang (2010) Removal of Chromium(VI) from Aqueous Solutions Using Polyaniline Doped with Sulfuric Acid, Industrial & Engineering Chemistry Research, 49, 9998–10004.
Neetu Talreja, Dinesh Kumar, Nishith Vermaa (2014) Removal of hexavalent chromium from water using Fe-grown carbonnanofibers containing porous carbon microbeads, Journal of Water Process Engineering, 3, 34-45.
N. L. Sukiman, X. Zhou, N. Birbilis, A.E. Hughes,J. M. C. Mol, S. J. Garcia, X. Zhou and G. E. Thompson (2013) Durability and Corrosionof Aluminium and Its Alloys:Overview, Property Space,Techniques and Developments, Aluminium Alloys - New Trends in Fabrication and Applications,Chapter 2, 47-97
Pellerin, C., Booker, S.M. (2000) Reflections on hexavalent chromium: health hazards of an industrial heavyweight. Environ. health perspect., 108, 402-407.
P.N. Singh, D. Tiwary, I. Sinha (2014) Improved removal of Cr(VI) by starch functionalized iron oxide nanoparticles, Journal of Environmental Chemical Engineering, Volume 2, Issue 4, 2252–2258.
R.A. Crane, T.B. Scott (2012) Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology, Journal of Hazardous Materials, 211-212, 112-125.
Rathinam Karthik, Sankaran Meenakshi (2014) Removal of hexavalent chromium ions using polyaniline/silica gel composite, Journal of Water Process Engineering, 1, 37–45.
Renjie Li,Lifen Liua, Fenglin Yang (2014) Removal of aqueous Hg(II) and Cr(VI) using phytic acid dopedpolyaniline/cellulose acetate composite membrane, Journal of Hazardous Materials, 280, 20-30.
Riccardo Ferrando, Julius Jellinek, Roy L. Johnston (2008) Nanoalloys: From theory to applications of alloy clusters and nanoparticles, Chemical Reviews, 108, 845-910.
Robert M. Powell, Robert W. Puls, Sharon K. Hightower, David A. Sabatini (1995) Coupled Iron Corrosion and Chromate Reduction: Mechanisms for Subsurface Remediation, Environmental Science & Technology, 29, 1913-1922.
Schrick, B.; Blough, J. L.; Jones, A. D.; Malouk, E. (2002) “Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles”, Chem. Mater., Vol. 14(12), 5140-5147.
S.C. Xu, S.S. Pan, Y. Xu, Y.Y. Luo, Y.X. Zhang, G.H. Lia (2014) Efficient removal of Cr(VI) from wastewater under sunlight byFe(II)-doped TiO2spherical shell, Journal of Hazardous Materials, 283, 7-13.
Shaoming Huang, Albert W. H. Mau (2003) 3D Carbon Nanotube Architectures on Glass Substrate by Stamp Printing BimetallicFe-Pt/Polymer Catalyst, The Journal of Physical Chemistry B, 107, 8285-8288.
Tsalev, D.L., Zaprianov, Z.K. (1985) Atomic absorption spectrometry in occupational and environmental health practice. Analytical Aspects and Health Significance, CRC Press, Boca Raton, Florida, Vol.1. USA:113.
T.T. Tsaia, J.K. Liu, Y.M,Chang, K.F. Chen, C.M. Kao (2014) Application of polycolloid-releasing substrate to remediatetrichloroethylene-contaminated groundwater: A pilot-scale study, Journal of Hazardous Materials, 268, 92-101.
Xuan Wang, Wenbo Yue, Maoshuai He, Manhong Liu, Jin Zhang, Zhongfan Liu (2004) Bimetallic Catalysts for the Efficient Growth of SWNTs on Surfaces, Chemistry of Materials, 16, 799-805.
Wu-Jun Liu, Ting-Ting Qian, Hong Jiang (2014) Bimetallic Fe nanoparticles: Recent advances in synthesis and application in catalytic elimination of environmental pollutants, Chemical Engineering Journal, 236, 448-463.
Wu Linfeng, Stephen M .C. Ritchie. (2006) Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoparticles, Chemosphere Vol. 63, 285-292.
Yit-Hong Tee, Leonidas Bachas, Dibakar Bhattacharyya (2009) Degradation of Trichloroethylene by Iron-Based Bimetallic Nanoparticles, The Journal of Physical Chemistry C, 113, 9454-9464.
Yueqiang Liu, Sara A. Majetich, Robert D. Tilton, David S. Sholl, Gregory V. Lowry (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties, Environmental Science & Technology, 39, 1338–1345.
Yunchul Cho, Sang-Il Choi (2010) Degradation of PCE, TCE and 1,1,1-TCA by nanosized FePd bimetallic particles under various experimental conditions, Chemosphere, 81, 940–945.
Yu Pan, Fan Zhang, Ke Wu, Zhaoyang Lu, Yu Chen, Yiming Zhou, Yawen Tang, Tianhong Lu (2012) Carbon supported PalladiumeIron nanoparticleswith uniform alloy structure as methanol-tolerantelectrocatalyst for oxygen reduction reaction, International Journal of Hydrogen Energy, 37, 2993-3000.
Zhe Chen, Zi Wang, Deli Wu, Luming Ma,2011, Electrochemical study of nitrobenzene reduction on galvanically replaced nanoscale Fe/Au particles, Journal of Hazardous Materials, 197, 424-429.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.23.123
論文開放下載的時間是 校外不公開

Your IP address is 3.145.23.123
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code