Responsive image
博碩士論文 etd-0718115-165801 詳細資訊
Title page for etd-0718115-165801
論文名稱
Title
發展持久性pH緩衝膠體基質處理受三氯乙烯污染之地下水
Development of long-lasting pH buffered colloidal substrate to remediate TCE-contaminated groundwater
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
116
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-24
繳交日期
Date of Submission
2015-08-18
關鍵字
Keywords
三氯乙烯、分子生物技術、飽和層、緩衝膠體基質、生物復育
buffered colloidal substrate, Molecular biological tool, trichloroethylene, Bioremediation, saturated zone
統計
Statistics
本論文已被瀏覽 5665 次,被下載 0
The thesis/dissertation has been browsed 5665 times, has been downloaded 0 times.
中文摘要
含氯有機溶劑為土壤及地下水中常見之重質非水相溶液(dense non-aqueous phase liquids, DNAPL)污染物,而三氯乙烯(trichloroethylene, TCE)則為最具代表性之含氯有機物,且被環保署列為21種國內建議優先調查之揮發性有機污染物。由於DNAPL污染場址之整治是屬於長期性的工作,因此生物整治技術是較為經濟可行的整治方式。惟DNAPL之生物降解需長期注入主要基質,但基質之注入將造成阻塞及地下水酸化問題,造成基質傳輸效果不佳並影響地下水質,進而操作維護難度增加等問題。因此,本研究之目的為發展一種具緩衝pH能力之緩衝膠體基質(buffered colloidal substrate, BCS),可緩釋基質及緩衝地下水之pH,以加強地下水中DNAPL之生物降解。研究中進行了BCS的合成及酸化試驗,最後在應用於微生物批次試驗中,觀察其TCE生物降解效率及酸化控制能力,並以分子生物技術進行菌相分析及菌種鑑定,了解在此環境下之優勢菌種。研究結果顯示,本研究所合成之BCS其放置一天後乳化安定性可達100%,放置96天後並無分層之現象且穩定性佳;酸化試驗BCS稀釋60倍監測45天,水中總有機碳所剩殘餘量最多約24%可繼續作為微生物所需之碳源,而pH值約8.7有利於還原脫氯之重要菌群生長;微生物批次試驗之BCS組別,其TCE降解率為85%以上,且反應到最後pH值可維持在約8.8,而菌相分析的結果也顯示此組別菌相豐富度最高,且由微生物定量分析的結果得知,第0天Dehalococcoides spp.(DHC)菌數約為4.53 × 105 gene copies/g,第145天DHC菌數約為6.11 × 104 gene copies/g,顯示DHC菌量並沒有銳減,故在此環境下適合脫氯菌群生長。因此綜合上述的結果,本研究所開發之BCS可作為透水性反應牆(permeable reactive barrier, PRB),能有效吸附於土壤中,以提高土壤中有機質含量,以長期釋放碳源提供給微生物利用及釋放OH-中和酸化現象,進而加強還原脫氯之生物復育,達到污染物降解之目標。此研究符合綠色整治之目標,不會造成環境危害,以達永續經營。
Abstract
Soil and groundwater at many existing and former industrial areas and disposal sites are contaminated by halogenated organic compounds that were released into the environment. When they are released into the subsurface, they tend to adsorb onto the soils and cause the appearance of DNAPL (dense-non-aqueous phase liquid) pool. The trichloroethylene (TCE) has been shown on induces hepatocellular carcinogens in mice and is a human carcinogen. Thus, TCE was used as the target compound in this study. As contaminated groundwater moves through the emplaced reactive zones, the contaminants are removed, and uncontaminated groundwater emerges from the downgradient side of the reactive zones. Application of in situ anaerobic bioremediation is a feasible technology to remediate DNAPL site. However, enhanced in situ bioremediation requires the injection of primary substrates, which would cause the acidification and odor problems of the subsurface environment. This would deteriorate the groundwater quality and cause the increase in maintenance cost. The objective of this proposed study is to develop buffered colloid substrate (BCS). The BCS can be applied in the saturated zone, which can release substrate from the colloid to enhance the reductive dechlorination of DNAPL in the saturated zone. Furthermore, the buffered colloid has the capability for pH control and prevents the decrease in pH value in groundwater. In this study, batch experiments were operated to test the feasibility of using BCS as the slow-released substrate and acidification control material. Several experimental conditions included the concentrations of contaminants and substrates, shacking speed, percentage of each component, acidification test, and molecular biotechnology. Results show BCS emulsion stability can reach 100% after place one day and no stratification for 96 days. Addition of BCS diluted 60-fold monitoring 45 days, the remaining residual amount of total organic carbon in water most about 24% can continue to serve as a carbon source of needed microorganisms, and a pH of about 8.7 dechlorination of important beneficial bacteria growth. Results from the microcosm study indicate that the addition of BCS would enhance the biodegradation rate of TCE under anaerobic conditions. Approximately 85% of TCE could be removed when BCS was added in the system. Increase in dehalococoides (DHC) population was observed after the addition of BCS. Results will be useful in designing a field-scale system to enhance the in situ bioremediation of chlorinated-solvent contaminated groundwater.
目次 Table of Contents
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 x
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 土壤及地下水受含氯脂肪族碳氫化物污染之概況 4
2.1.1 含氯脂肪族碳氫化物之污染概況 4
2.1.2 三氯乙烯之特性及對人體之危害 7
2.1.3 三氯乙烯之傳輸機制 11
2.2 土壤與地下水污染整治技術之種類及應用趨勢 13
2.2.1 地下水之現地生物整治技術 16
2.2.2透水性反應牆 18
2.3 三氯乙烯之生物反應機制 22
2.3.1 三氯乙烯之好氧生物處理 22
2.3.2 三氯乙烯之厭氧生物處理 24
2.4 厭氧生物整治技術之挑戰 28
2.4.1 地下水pH對生物整治之影響 30
2.4.2 發展緩衝膠體基質 33
2.5 分子生物技術之應用 35
2.5.1 16S rDNA 在細菌演化分類與鑑定上的獨特性及應用 37
2.5.2 降解含氯脂肪族之菌種與基因 39
第三章 實驗設備與方法 41
3.1 研究流程 41
3.2 實驗設計 43
3.2.1 前導試驗 43
3.2.2 批次試驗 47
3.3 實驗材料與設備 48
3.3.1 實驗試藥 48
3.3.2 實驗儀器與設備 48
3.3.3 供試之土壤及地下水來源 49
3.3.4 供試之乳化型基質 50
3.4 實驗分析方法 50
3.4.1 水質分析 50
3.4.2 固體物成分分析 52
3.5 分子生物技術 53
3.5.1 土壤中微生物之DNA萃取 54
3.5.2 聚合酶鏈鎖反應 (Polymerase Chain Reaction, PCR) 54
3.5.3 DNA純化 56
3.5.4 即時定量PCR(real-time PCR,qPCR) 56
3.5.5 變性梯度膠電泳(denaturing gradient gel electrophoresis, DGGE) 57
3.5.6 DNA定序比對 58
第四章 結果與討論 59
4.1 緩衝膠體基質(BCS)之合成 59
4.1.1 乳化試驗 59
4.1.2 穩定性試驗 62
4.2 緩衝膠體基質(BCS)之可利用性 65
4.2.1 酸化試驗 65
4.3 厭氧微生物批次試驗 69
4.3.1 自然降解組 (N) 70
4.3.2 乳化型釋碳基質組 (E) 74
4.3.3 緩衝膠體基質組 (B) 79
4.3.4 綜合討論 83
4.4 分子生物技術 89
4.4.1 批次實驗之微生物菌相分析 (DGGE) 90
4.4.2 批次實驗之微生物菌量分析 (qPCR) 92
4.4.3 批次實驗之微生物功能基因分析 (qPCR) 94
第五章 結論與建議 96
5.1 結論 96
5.2 建議 98
參考文獻 99
參考文獻 References
Adamson, D.T., & Charles, J.N. (2009) “Support of source zone bioremediation through endogenous biomass decay and electron donor recycling”, Bioremediation Journal, 13(1), 29-40.
Adamson, D.T., Delina, Y.L., & Joseph, B.H. (2004) “Flux and product distribution during biological treatment of tetrachloroethene dense non-aqueous-phase liquid”, Environmental Science & Technology, 38(7), 2021-8.
Adamson, D.T., James, M.M., & Joseph, B.H. (2003) “Inoculation of DNAPL source zone to initiate reductive dechlorination of PCE”, Environmental Science & Technology, 37(11), 2525-33.
AFCEE. (2007) “Protocol for In Situ Bioremediation of Chlorinated Solvents Using Edible Oil”, Prepared by Solutions IES, Inc., Terra Systems, Inc., and Parsons Infrastructure & Technology Group, Inc. Final. October. (available at http://www.afcee.brooks.af.mil/products/techtrans/).
AFCEE. (2002) “Aqueous and Mineral Intrinsic Bioremediation Assessment (AMIBA) Protocol”, Prepared by Earth Science Services, Inc. and Rowan University. (available at http://www.afcee.brooks.af.mil/products/techtrans/).
AFCEE, Naval Facilities Engineering Service Center (NFESC) and the Environmental Security Technology Certification Program (ESTCP). (2004) “Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents”, Prepared by Parsons Infrastructure & Technology Group, Inc., Denver. Colorado. August. (available at http://www.afcee.brooks.af.mil/ products/techtrans/).
Amos, B.K., Eric, J.S., Kurt, D.P., & Frank, E.L. (2009) “Spatial and temporal distributions of geobacter lovleyi and dehalococcoides spp. during bioenhanced PCE-NAPL dissolution RID F-6862-2010”, Environmental Science & Technology, 43(6), 1977-85.
Amos, B.K., John, A.C., Linda, M.A., Kurt, D.P., & Frank, E.L. (2007) “Experimental evaluation and mathematical modeling of microbially enhanced tetrachloroethene (PCE) dissolution”, Environmental Science & Technology, 41(3), 963-70.
Amos, B.K., Kirsti, M.R., Claribel, C.G., Elizabeth, P.C., & Frank, E.L. (2008) “Oxygen effect on dehalococcoides viability and biomarker quantification”, Environmental Science & Technology, 42(15), 5718-26.
Amos, B. K., Suchomel, E. J., Pennell, K. D., & Löffler, F. E. (2008), “Microbial activity and distribution during enhanced contaminant dissolution from a NAPL source zone”, Water research, 42(12), 2963-2974.
Aulenta, F., Majone, M., & Tandoi, V. (2006) “Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions”, Journal of Chemical Technology and Biotechnology, 81(9), 1463-1474.
Borden, R.C., & Rodriguez, B.X. (2006) “Evaluation of slow release substrates for anaerobic bioremediation”, Bioremediation Journal, 10(1-2), 59-69.
Borden, R.C. (2011) pH and Aquifer Remediation. Ground Water Processionals of North Carolina. December 8, 2011, Raleigh, NC.
Cápiro, N.L., Granbery, E.K., Lebrón, C.A., Major, D.W., McMaster, M.L., Pound, M.J., & Pennell, K.D. (2011) “Liquid− Liquid Mass Transfer of Partitioning Electron Donors in Chlorinated Solvent Source Zones”, Environmental science & technology, 45(4), 1547-1554.
Cápiro, N.L., Granbery, E.K., Amos, B.K., Löffler, F.E., & Pennell, K.D. (2008) “Coupling Surfactant Flushing and Bioaugmentation for PCE-DNAPL Source Zone Treatment”, In AGU Fall Meeting Abstracts (Vol. 1, p.04).
Carr, C.S., Garg, S., & Hughes, J.B. (2000) “Effect of dechlorinating bacteria on the longevity and composition of PCE-containing nonaqueous phase liquids under equilibrium dissolution conditions”, Environmental Science & Technology, 34(6), 1088-1094.
Christ, J.A., & Abriola, L.M. (2007) “Modeling metabolic reductive dechlorination in dense non-aqueous phase liquid source-zones”, Advances in water resources, 30(6), 1547-1561.
Chu, M., Kitanidis, P.K., & McCarty, P.L. (2004) “Possible factors controlling the effectiveness of bioenhanced dissolution of non-aqueous phase tetrachloroethene”, Advances in water resources, 27(6), 601-615.
Cope, N., & Hughes, J.B. (2001) “Biologically-enhanced removal of PCE from NAPL source zones”, Environmental science & technology, 35(10), 2014-2021.
Cupples, A.M., Spormann, A.M., & McCarty, P.L. (2004) “Comparative evaluation of chloroethene dechlorination to ethene by Dehalococcoides-like microorganisms”, Environmental science & technology, 38(18), 4768-4774.
Duhamel, M., Mo, K., & Edwards, E.A. (2004) “Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene”, Applied and Environmental Microbiology, 70(9), 5538-5545.
Duhamel, M., Wehr, S.D., Yu, L., Rizvi, H., Seepersad, D., Dworatzek, S., & Edwards, E.A. (2002) “Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride”, Water Research, 36(17), 4193-4202.
Duhamel, M., & Edwards, E.A. (2006) “Microbial composition of chlorinated ethene-degrading cultures dominated by Dehalococcoides”, FEMS microbiology ecology, 58(3), 538-549.
Fogel, S., Smoler, D., & Findlay, M. (2007) Lessons learned as a result of completing 250 microcosm studies. Proceedings of the Ninth International In Situ and On-Site Bioremediation Symposium, Baltimore, Maryland.
Fogel, S., Findlay, M., Folsom, S., & Kozar, M., (2009) “The importance of pH in reductive dechlorination of chlorinated solvents”, In Wickramanayake GB, Rectanus HV (eds). Proc. 10th International In Situ and On-Site Bioremediation Symposium, Baltimore, MD, USA. May 5–8. Battelle Memorial Institute, Columbus, OH, USA. Paper No. L-47.
Glover, K. C., Munakata-Marr, J., & Illangasekare, T. H. (2007) “Biologically enhanced mass transfer of tetrachloroethene from DNAPL in source zones: experimental evaluation and influence of pool morphology”, Environmental science & technology, 41(4), 1384-1389.
Hatzinger, P. B., & Alexander, M. (1995), “Effect of aging of chemicals in soil on their biodegradability and extractability”, Environmental science & technology, 29(2), 537-545.
He, J., Holmes, V. F., Lee, P. K., & Alvarez-Cohen, L. (2007), “Influence of vitamin B12 and cocultures on the growth of Dehalococcoides isolates in defined medium”, Applied and environmental microbiology, 73(9), 2847-2853.
Heron, G., Barcelona, M. J., Andersen, M. L., & Christensen, T. H. (1997), “Determination of nonvolatile organic carbon in aquifer solids after carbonate removal by sulfurous acid”, Groundwater, 35(1), 6-11.
Huang, D., & Becker, J. G. (2010), “Dehalorespiration model that incorporates the self-inhibition and biomass inactivation effects of high tetrachloroethene concentrations”, Environmental science & technology, 45(3), 1093-1099.
ITRC (The Interstate Technology & Regulatory Council). (2008), “In Situ Bioremediation of Chlorinated Ethene DNAPL Source Zones”.
Kouznetsova, I., Mao, X., Robinson, C., Barry, D. A., Gerhard, J. I., & McCarty, P. L. (2010), “Biological reduction of chlorinated solvents: Batch-scale geochemical modeling”, Advances in Water Resources, 33(9), 969-986.
Kueper BH. (1996), Unpublished. Queen’s University, Kingston, ON, Canada.
Lee, Y. C., Kwon, T. S., Yang, J. S., & Yang, J. W. (2007), “Remediation of groundwater contaminated with DNAPLs by biodegradable oil emulsion”, Journal of hazardous materials, 140(1), 340-345.
Long, C. M., & Borden, R. C. (2006), “Enhanced reductive dechlorination in columns treated with edible oil emulsion”, Journal of contaminant hydrology, 87(1), 54-72.
Löffler, F. E., Jun Yan, K. M., Ritalahti, L. A., Elizabeth, A. E., Konstantinos, T. K., Jochen, A. M., Heather Fullerton, Stephen, H. Z., & Alfred, M. S., (2012), “Dehalococcoides mccartyi gen. nov., sp. nov., obligate organohalide-respiring anaerobic bacteria, relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidetes classis nov., within the phylum Chloroflexi”, International Journal of System Evolutionary Microbiology, ijs.0.034926-0; published ahead of print April 27, 2012, doi:10.1099/ijs.0.034926-0
Lowe, S. E., Jain, M. K., & Zeikus, J. G. (1993), “Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates”, Microbiological reviews, 57(2), 451.
Maymó-Gatell, X., Anguish, T., & Zinder, S. H. (1999), “Reductive dechlorination of chlorinated ethenes and 1, 2-dichloroethane by “Dehalococcoides ethenogenes” 195”, Applied and Environmental Microbiology, 65(7), 3108-3113.
Maymó-Gatell, X., Anguish, T., & Zinder, S. H. (1999), “Reductive dechlorination of chlorinated ethenes and 1, 2-dichloroethane by “Dehalococcoides ethenogenes” 195”, Applied and Environmental Microbiology, 65(7), 3108-3113.
Maymó-Gatell, X., Tandoi, V., Gossett, J. M., & Zinder, S. H. (1995), “Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis”, Applied and Environmental Microbiology, 61(11), 3928-3933.
McCarty, P. L., Chu, M. Y., & Kitanidis, P. K. (2007), “Electron donor and pH relationships for biologically enhanced dissolution of chlorinated solvent DNAPL in groundwater”, European Journal of Soil Biology, 43(5), 276-282.
Pokrovsky, O. S., & Schott, J. (2004), “Experimental study of brucite dissolution and precipitation in aqueous solutions: surface speciation and chemical affinity control”, Geochimica et Cosmochimica Acta, 68(1), 31-45.
Philips, J., Springael, D., & Smolders, E. (2011), “A three-layer diffusion-cell to examine bio-enhanced dissolution of chloroethene dense non-aqueous phase liquid”, Chemosphere, 83(7), 991-996.
Robinson, C., & Barry, D. A. (2009), “Design tool for estimation of buffer requirement for enhanced reductive dechlorination of chlorinated solvents in groundwater”, Environmental Modelling & Software, 24(11), 1332-1338.
Robinson, C., Barry, D. A., McCarty, P. L., Gerhard, J. I., & Kouznetsova, I. (2009), “pH control for enhanced reductive bioremediation of chlorinated solvent source zones”, Science of the Total Environment, 407(16), 4560-4573.
Rowlands, D., (2004), “Development of optimal pH for degradation of chlorinated solvents by the KB-1TM anaerobic bacterial culture”, Thesis. University of Guelph.
Sabalowsky, A. R., & Semprini, L. (2010), “Trichloroethene and cis‐1, 2‐dichloroethene concentration‐dependent toxicity model simulates anaerobic dechlorination at high concentrations: I. batch‐fed reactors”, Biotechnology and bioengineering, 107(3), 529-539.
Sabalowsky, A. R., & Semprini, L. (2010), “Trichloroethene and cis‐1, 2‐dichloroethene concentration‐dependent toxicity model simulates anaerobic dechlorination at high concentrations: I. batch‐fed reactors”, Biotechnology and bioengineering, 107(3), 529-539.
SERDP and ESTCP (Remediation Technology Monograph Series). (2010), “In Situ Remediation of Chlorinated Solvent Plumes”.
SERDP and ESTCP (Remediation Technology Monograph Series). (2014), “Chlorinated Solvent Source Zone Remediation”.
Sleep, B. E., Brown, A. J., & Lollar, B. S. (2005), “Long-term tetrachlorethene degradation sustained by endogenous cell decay”, Journal of Environmental Engineering and Science, 4(1), 11-17.
Sleep, B. E., Seepersad, D. J., Mo, K., Heidorn, C. M., Hrapovic, L., Morrill, P. L., & Edwards, E. A. (2006), “Biological enhancement of tetrachloroethene dissolution and associated microbial community changes”, Environmental science & technology, 40(11), 3623-3633.
Spormann, A. M., (2011), “Genome-Enabled Molecular Tools for Reductive Dehalogenation. Partners in Environmental Technology Technical Symposium and Workshop”, November 29-December 1, 2011, Washington, D.C.
Stroo, H. F., & Ward, C. H. (Eds.). (2010), “In situ remediation of chlorinated solvent plumes”, Springer Science & Business Media.
USGS. (2006), “Occurrence and implications of selected chlorinated solvents in ground water and source water in the United States and in drinking water in 12 Northeast and Mid-Atlantic states”, 1993–2002; Scientific investigations report 2005–5268, U.S. Department of the Interior and U.S. Geological Survey.
Vainberg, S., Condee, C. W., & Steffan, R. J. (2009), “Large-scale production of bacterial consortia for remediation of chlorinated solvent-contaminated groundwater”, Journal of industrial microbiology & biotechnology, 36(9), 1189-1197.
Yang, Y., & McCarty, P. L. (2000), “Biologically enhanced dissolution of tetrachloroethene DNAPL”, Environmental Science & Technology, 34(14), 2979-2984.
Yang, Y., & McCarty, P. L. (2002), “Comparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution”, Environmental science & technology, 36(15), 3400-3404.
Yu, S., & Semprini, L. (2009), “Enhanced reductive dechlorination of PCE DNAPL with TBOS as a slow-release electron donor”, Journal of hazardous materials, 167(1), 97-104.
Zhuang, P., & Pavlostathis, S. G. (1995), “Effect of temperature, pH and electron donor on the microbial reductive dechlorination of chloroalkenes”, Chemosphere, 31(6), 3537-3548.
行政院勞委會(2015),http://www.iosh.gov.tw/
林育正(2014),模擬現地1,2-二氯乙烷生物復育之異味控制試驗,國立中山大學環境工程研究所。
侯甘俊(2010),超音波法改善攪拌製備生質柴油之研究,高苑科技大學化工與生化工程研究所。
洪偉章、李金枝、陳榮秀(2012),化妝品原料及功能,藝軒圖書。
莊雅婷(2010),具特殊官能基之土壤對水溶液中有機與無機污染物吸持行為之研究,國立中央大學環境工程研究所。
張永宜(2007),乳化奈米級零價鐵處理水溶液中之三氯乙烯”,國立中山大學環境工程研究所碩士論文。
張為憲,李敏雄,呂政義,張永和,陳昭雄,孫璐西,陳怡宏,張基郁,顏國欽,林志城,林慶文(1995),食品化學。國立編譯館。
郭育嘉(2013),應用現地乳化油生物屏障處理受含氯有機物污染之地下水,國立中山大學環境工程研究所。
陳東文(2003),以”油”-界面活性劑-“水” 微乳液為模板製備囊泡狀中孔洞材料,國立成功大學化學系碩博士論文。
陳家洵(2008),地下水之染問題之探討,Newsletter 應倫通訊 第三期 公害專題。
陳逸明(2010),以乳化型基質處理受三氯乙烯污染之地下水,國立中山大學環境工程研究所。
梁書豪、高志明、葉琮裕、陳逸明、楊瑞興、何曉蓉(2010),以乳化型釋氫基質處理受三氯乙烯污染之地下水,環境科技論壇,第8-1-8-14頁。
黃智威(2012),1,2-二氯乙烷污染土壤之微生態系統批次降解研究,國立中山大學生物科學系研究所。
黃宇伶(2013),以長效型基質處理受三氯乙烯污染之地下水,國立中山大學環境工程研究所。
經濟部工業局(2004),土壤與地下水污染整治技術手冊-生物處理技術。
蔡明勳(2011),帶電Laponite懸浮液:凝膠與玻璃,國立中央大學化學工程與材料工程學系。
環保署(2015),行政院環保署公告網,http://atftp.epa.gov.tw/announce/
環保署(2015),行政院環保署土壤及地下整治網(http://sgw.epa.gov.tw/)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.228.88
論文開放下載的時間是 校外不公開

Your IP address is 18.191.228.88
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code