Responsive image
博碩士論文 etd-0718116-153028 詳細資訊
Title page for etd-0718116-153028
論文名稱
Title
應用DIC技術與田口法於矽基板鍍ITO薄膜殘留應力分佈之分析
Analysis of Residual Stress Distribution in ITO Thin Film Coated on Si-Substrate by Applying DIC Technique and Taguchi Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
140
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-08
繳交日期
Date of Submission
2016-08-18
關鍵字
Keywords
鍍膜殘留應力、數位影像相關法、田口法、分佈均勻度、透明導電薄膜
Digital Image Correlation Method, Indium Tin Oxide Film, Taguchi Method, Coating Residual Stress, Coating Distribution
統計
Statistics
本論文已被瀏覽 5741 次,被下載 891
The thesis/dissertation has been browsed 5741 times, has been downloaded 891 times.
中文摘要
在基板上鍍薄膜常應用於MEMS製程中,當從製程的環境溫度冷卻至室溫時,薄膜與基板之間熱膨脹係數差異會導致鍍膜殘留應力的產生,不但基板會有彎曲變形的情況,也影響品質。本研究主要目的在探討於ㄧ矽基板鍍上透明導電薄膜後,依不同製程參數組合得到的結果,討論鍍膜的製程參數與厚度變化對在鍍膜製程中所產生的殘留應力大小和分佈均勻度之影響。
本研究考慮四項影響製程的因子,包含鍍膜時間、濺鍍功率、真空度和氬氣流速,每項因子皆選取三個水準,再利用田口法整理成九項組合進行實驗。在九組的實驗組合下,每組合有三件鍍膜矽基板試片,實驗針對每試片上的九個測試點進行量測,透過數位影像相關法得到兩組不同拍攝角度量測所得之鍍膜前後試片的平面位移,再將此兩組平面位移換算出試片面外位移之後,依修正後的Stoney's equation公式得到X方向和Y方向的鍍膜殘留應力,再依兩殘留應力值整理出鍍膜的等效殘留應力,最後由每試片上九測試點的等效殘留應力平均值和標準差計算得到之變異係數來探討試片殘留應力分佈的均勻性。
依實驗結果能夠得知在製程參數對殘留應力大小的影響上,鍍膜時間和濺鍍功率有極重要的影響,而真空度和氬氣流速的影響則相對小許多。在製程參數對殘留應力分佈均勻度的影響上,其影響性由大到小依序為鍍膜時間、氬氣流速、濺鍍功率和真空度。但不論在殘留應力的大小或分佈上,製程的鍍膜時間皆是最關鍵的影響因素。最後在鍍膜厚度變化對殘留應力的影響上,隨著鍍膜厚度的增加,殘留應力大小則隨之降低,且同組實驗的三件試片量測值間之差異較低,亦即量測精確度佳,但殘留應力分佈較不均勻。
Abstract
In the MEMS process, a thin film is likely to be coated on a substrate. Residual stress is established in the coating upon cooling to room temperature because thermal expansion coefficients of the thin film and the substrate are different. The residual stress in the coating not only causes bending but also affects the quality of coating. This thesis discusses the relationship of the residual stress and its distribution with the parameters of the process and the thickness of the ITO thin film that is coated on the Si-substrate.
Four parameters of coating process - coating time, sputtering power, working pressure, and argon flow rate – are considered here. In the experiment, each parameter is set to one of three levels, consistent with the Taguchi Method, yielding nine combinations. For each of the nine combinations, three Si-substrates are used. Measurements are made at nine points on each Si-substrate. Two sets of the in-plane displacement of the coating from two different angles of the screen can be measured by using digital image correlation technique. The obtained sets of in-plane displacements can be used to calculate the out-of-plane displacement, the components of residual stress in the x-direction and the y-direction can be calculated using the modified Stoney’s equation. The equivalent residual stress is calculated from these components of residual stresses, and the coefficient of variation is calculated from the average and standard deviation of the equivalent residual stress at the nine points on the Si-substrate. Finally, the distribution of residual stress in coating is discussed with reference to the experimentally obtained coefficient of variation.
The experimental results indicate that the coating time and the sputtering power importantly affect the magnitude of residual stress, but the working pressure and the argon flow rate have very little effect. Additionally, the experimental results show that the residual stress distribution is affected by coating time, sputtering power, argon flow rate and working pressure, in order of declining strength of the effect. The coating time most strongly affects the coating process. As the coating thickness increases, the residual stress decreases and the variation among measurements made of three Si-substrates of same combination declines. Restated, the precision of the experimental measurements improves with the coating thickness, but the distribution of residual stress becomes less uniform.
目次 Table of Contents
誌謝 i
摘要 ii
Abstract iii
目錄 v
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1研究動機與目的 1
1.2文獻回顧 2
1.2.1透明導電薄膜濺鍍之應用 2
1.2.2鍍膜之殘留應力 4
1.2.3數位影像相關法之起源與應用 6
1.2.4數位影像相關法三維量測之發展與應用 7
1.2.5田口法之應用 9
1.3全文架構 11
第二章 基礎理論 12
2.1鍍膜之殘留應力計算 12
2.2數位影像相關法之二維量測 17
2.2.1影像圖片資訊 17
2.2.2影像重建 17
2.2.3物體平面變形理論 18
2.2.4影像相關原理 19
2.2.5影像特徵搜尋 20
2.2.6求取最佳位移函數 21
2.3數位影像相關法之面外位移量測 22
2.3.1旋轉座標理論 23
2.3.2面外位移之理論推導 24
2.4田口法 25
2.4.1直交表 26
2.4.2實驗設計因子 26
2.4.3信號雜訊比 27
第三章 實驗方法 35
3.1實驗流程簡介 35
3.2實驗設備 36
3.2.1硬體設備 36
3.2.2軟體設備 38
3.3實驗環境參數測定 39
3.3.1比例因子 39
3.3.2影像重建誤差 40
3.3.3解析度與精準度 41
3.3.4誤差分析 42
3.3.5分析之正確性 43
3.4實驗步驟 44
3.4.1矽基板與透明導電薄膜之規劃 45
3.4.2矽基板表面影像分析 45
3.4.3田口法之規劃 48
第四章 結果與討論 64
4.1實驗數據整理 64
4.2鍍膜參數對殘留應力大小之影響 66
4.3鍍膜參數對殘留應力均勻度之影響 68
4.4厚度變化對殘留應力之影響 70
第五章 結論與未來展望 108
5.1結論 108
5.2未來展望 109
參考文獻 110
附錄 119
參考文獻 References
[1] D. G. Neerinck and T. J. Vink, "Depth profiling of thin ITO films by grazing incidence X-ray diffraction," Thin Solid Films, vol. 278, pp. 12-17, 1996.
[2] C. G. Choi, K. No, W.-J. Lee, H.-G. Kim, S. O. Jung, W. J. Lee, et al., "Effects of oxygen partial pressure on the microstructure and electrical properties of indium tin oxide film prepared by d.c. magnetron sputtering," Thin Solid Films, vol. 258, pp. 274-278, 1995.
[3] R. N. Joshi, V. P. Singh, and J. C. McClure, "Characteristics of indium tin oxide films deposited by r.f. magnetron sputtering," Thin Solid Films, vol. 257, pp. 32-35, 1995.
[4] A. N. H. Al-Ajili and S. C. Bayliss, "A study of the optical, electrical and structural properties of reactively sputtered InOx and ITOx thin films," Thin Solid Films, vol. 305, pp. 116-123, 1997.
[5] M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, and J. Stollenwerk, "Dependence of oxygen flow on optical and electrical properties of DC-magnetron sputtered ITO films," Thin Solid Films, vol. 326, pp. 72-77, 1998.
[6] M. Bender, J. Trube, and J. Stollenwerk, "Deposition of transparent and conducting indium-tin-oxide films by the r.f.-superimposed DC sputtering technology," Thin Solid Films, vol. 354, pp. 100-105, 1999.
[7] C. May and J. Strümpfel, "ITO coating by reactive magnetron sputtering–comparison of properties from DC and MF processing," Thin Solid Films, vol. 351, pp. 48-52, 1999.
[8] S. K. Choi and J. I. Lee, "Effect of film density on electrical properties of indium tin oxide films deposited by dc magnetron reactive sputtering," Journal of Vacuum Science & Technology A, vol. 19, pp. 2043-2047, 2001.
[9] P. F. Carcia, R. S. McLean, M. H. Reilly, Z. G. Li, L. J. Pillione, and R. F. Messier, Resistivity and Microstructure Issues in Indium-Oxide Based Films Grown by RF Magnetron Sputtering on Flexible Polyester Substrates: Society of Vacuum Coaters, 2003.
[10] W. D. Bosscher, H. Delrue, J. V. Hoisbeke, S. Matthews, and A. Blondeel, Rotating Cylindrical ITO Targets for Large Area Coating: Society of Vacuum Coaters, 2005.
[11] D. R. Gibson, I. T. Brinkley, G. H. Hall, E. M. Waddell, and J. M. Walls, "Properties of indium tin oxide deposited using reactive closed field magnetron sputtering," 2006 Society of VacuumCoaters, 49th Annual Technical Conference Proceedings, 2006.
[12] G. Gore, "On the Properties of Electro-Deposited Antimony," Philosophical Transactions of the Royal Society of London, vol. 148, pp. 185-197, 1858.
[13] G. G. Stoney, "The Tension of Metallic Films Deposited by Electrolysis," Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 82, pp. 172-175, 1909.
[14] R. W. Hoffman and E. C. Crittenden, "Determination of stress in evaporated metal films," Phys. Rev.Vol.78, pp. pp.349-350, 1959.
[15] J. D. Finegan and R. W. Hoffman, "Stress Anisotropy in Evaporated Iron Films," Journal of Applied Physics, vol. 30, pp. 597-598, 1959.
[16] A. E. Ennos, "Stresses Developed in Optical Film Coatings," Applied Optics, vol. 5, pp. 51-61, 1966.
[17] E. Klokholm, "An Apparatus for Measuring Stress in Thin Films," Review of Scientific Instruments, vol. 40, pp. 1054-1058, 1969.
[18] K. Röll and H. Hoffmann, "Michelson interferometer for deformation measurements in an UHV system at elevated temperatures," Review of Scientific Instruments, vol. 47, pp. 1183-1185, 1976.
[19] S. M. Rossnagel, P. Gilstrap, and R. Rujkorakarn, "Stress measurement in thin films by geometrical optics," Journal of Vacuum Science & Technology, vol. 21, pp. 1045-1046, 1982.
[20] A. Takeshi, N. Yasuo, and K. Seiichi, "An Improved Optical Lever Technique for Measuring Film Stress," Japanese Journal of Applied Physics, vol. 28, p. 299, 1989.
[21] S. N. Sahu, J. Scarminio, and F. Decker, "A laser beam deflection system for measuring stress variations in thin film electrodes," J. Electrochemical. Soc., vol. Vol.137, pp. pp1150-1154, 1990.
[22] L. B. Freund, J. A. Floro, and E. Chason, "Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations," Applied Physics Letters, vol. 74, pp. 1987-1989, 1999.
[23] K. S. Chen and K. S. Ou, "Modification of curvature-based thin-film residual stress measurement for MEMS applications," Journal of Micromechanics and Microengineering, vol. 12, p. 917, 2002.
[24] I. C. Cheng, A. Kattamis, K. Long, J. C. Sturm, and S. Wagner, "Stress control for overlay registration in a-Si:H TFTs on flexible organic-polymer-foil substrates," Journal of the Society for Information Display, vol. 13, pp. 563-568, 2005.
[25] Y. Zhang and Y.-p. Zhao, "Applicability range of Stoney’s formula and modified formulas for a film/substrate bilayer," Journal of Applied Physics, vol. 99, 2006.
[26] C.-L. Tien and H.-D. Zeng, "Measuring residual stress of anisotropic thin film by fast Fourier transform," Optics Express, vol. 18, pp. 16594-16600, 2010.
[27] L. Zhang, H. Yang, X. Pang, K. Gao, and A. A. Volinsky, "Microstructure, residual stress, and fracture of sputtered TiN films," Surface and Coatings Technology, vol. 224, pp. 120-125, 2013.
[28] R. Anzalone, A. Alberti, and F. La Via, "Evaluation of 3C-SiC/Si residual stress and curvatures along different wafer direction," Materials Letters, vol. 118, pp. 130-133, 2014.
[29] C.-H. Chien, T.-H. Su, C.-T. Wang, and B.-S. Chen, "Using Digital Image Correlation Method for Measuring Residual Stress in the Nickel Coating of the Specimen," SEM TECHNICAL ARTICLE, 2015.
[30] W. H. Peters and W. F. Ranson, "Digital Imaging Techniques In Experimental Stress Analysis," Optical Engineering, vol. 21, 1982.
[31] M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeill, "Determination of displacements using an improved digital correlation method," Image and Vision Computing, vol. 1, pp. 133-139, 1983.
[32] T. C. Chu, W. F. Ranson, and M. A. Sutton, "Applications of digital-image-correlation techniques to experimental mechanics," Experimental Mechanics, vol. 25, pp. 232-244, 1985.
[33] M. A. Sutton, S. R. McNeill, J. Jang, and M. Babai, "Effects Of Subpixel Image Restoration On Digital Correlation Error Estimates," Optical Engineering, vol. 27, 1988.
[34] M. A. Sutton, C. Mingqi, W. H. Peters, Y. J. Chao, and S. R. McNeill, "Application of an optimized digital correlation method to planar deformation analysis," Image and Vision Computing, vol. 4, pp. 143-150, 1986.
[35] H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, "Digital image correlation using Newton-Raphson method of partial differential correction," Experimental Mechanics, vol. 29, pp. 261-267, 1989.
[36] B. Pan and K. Li, "A fast digital image correlation method for deformation measurement," Optics and Lasers in Engineering, vol. 49, pp. 841-847, 2011.
[37] Y. H. Wang, J. H. Jiang, C. Wanintrudal, C. Du, D. Zhou, L. M. Smith, et al., "WHOLE FIELD SHEET-METAL TENSILE TEST USING DIGITAL IMAGE CORRELATION," Experimental Techniques, vol. 34, pp. 54-59, 2010.
[38] U. Eitner, M. Köntges, and R. Brendel, "Use of digital image correlation technique to determine thermomechanical deformations in photovoltaic laminates: Measurements and accuracy," Solar Energy Materials and Solar Cells, vol. 94, pp. 1346-1351, 2010.
[39] A. M. Korsunsky, M. Sebastiani, and E. Bemporad, "Residual stress evaluation at the micrometer scale: Analysis of thin coatings by FIB milling and digital image correlation," Surface and Coatings Technology, vol. 205, pp. 2393-2403, 2010.
[40] A. S. Dickinson, A. C. Taylor, H. Ozturk, and M. Browne, "Experimental Validation of a Finite Element Model of the Proximal Femur Using Digital Image Correlation and a Composite Bone Model," Journal of Biomechanical Engineering, vol. 133, 2011.
[41] M. Sebastiani, C. Eberl, E. Bemporad, and G. M. Pharr, "Depth-resolved residual stress analysis of thin coatings by a new FIB–DIC method," Materials Science and Engineering: A, vol. 528, pp. 7901-7908, 2011.
[42] Z. L. Kahn-Jetter and T. C. Chu, "Three-dimensional displacement measurements using digital image correlation and photogrammic analysis," Experimental Mechanics, vol. 30, pp. 10-16, 1990.
[43] P. F. Luo, Y. J. Chao, M. A. Sutton, and W. H. Peters, "Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision," Experimental Mechanics, vol. 33, pp. 123-132, 1993.
[44] G. Vendnroux, N. Schmidt, and W. G. Knauss, "Submicron deformation field measurements: Part 3. Demonstration of deformation determinations," Experimental Mechanics, vol. 38, pp. 154-160, 1998.
[45] G. Vendroux and W. G. Knauss, "Submicron deformation field measurements: Part 1. Developing a digital scanning tunneling microscope," Experimental Mechanics, vol. 38, pp. 18-23, 1998.
[46] G. Vendroux and W. G. Knauss, "Submicron deformation field measurements: Part 2. Improved digital image correlation," Experimental Mechanics, vol. 38, pp. 86-92, 1998.
[47] C. Quan, C. J. Tay, and Y. H. Huang, "3-D deformation measurement using fringe projection and digital image correlation," Optik - International Journal for Light and Electron Optics, vol. 115, pp. 164-168, 2004.
[48] S. Roux, F. Hild, P. Viot, and D. Bernard, "Three-dimensional image correlation from X-ray computed tomography of solid foam," Composites Part A: Applied Science and Manufacturing, vol. 39, pp. 1253-1265, 2008.
[49] F. Grytten, H. Daiyan, M. Polanco-Loria, and S. Dumoulin, "Use of digital image correlation to measure large-strain tensile properties of ductile thermoplastics," Polymer Testing, vol. 28, pp. 653-660, 2009.
[50] T. Wu, M. Coret, and A. Combescure, "Strain Localisation and Damage Measurement by Full 3D Digital Image Correlation: Application to 15-5PH Stainless Steel," Strain, vol. 47, pp. 49-61, 2011.
[51] E. Ghafoori and M. Motavalli, "Analytical calculation of stress intensity factor of cracked steel I-beams with experimental analysis and 3D digital image correlation measurements," Engineering Fracture Mechanics, vol. 78, pp. 3226-3242, 2011.
[52] W.-C. Wang, Y.-T. Chou, H.-Y. Chieh, and W.-J. Sian, "Inspection of internal defects in cfrp circular tubes by three-dimensional digital image correction method," 15th International Conference on Experimental Mechanics, 2012.
[53] C. Leitão, I. Galvão, R. M. Leal, and D. M. Rodrigues, "Determination of local constitutive properties of aluminium friction stir welds using digital image correlation," Materials & Design, vol. 33, pp. 69-74, 2012.
[54] E. Fagerholt, T. Børvik, and O. S. Hopperstad, "Measuring discontinuous displacement fields in cracked specimens using digital image correlation with mesh adaptation and crack-path optimization," Optics and Lasers in Engineering, vol. 51, pp. 299-310, 2013.
[55] J. Harvent, B. Coudrin, L. Brèthes, J.-J. Orteu, and M. Devy, "Shape Measurement Using a New 3D-DIC Algorithm That Preserves Sharp Edges," in Advancement of Optical Methods in Experimental Mechanics, Volume 3: Conference Proceedings of the Society for Experimental Mechanics Series, H. Jin, C. Sciammarella, S. Yoshida, and L. Lamberti, Eds., ed Cham: Springer International Publishing, 2014, pp. 69-76.
[56] 李輝煌,田口方法: 品質設計的原理與實務 第四版 Taguchi Methods : Principles and Practices of Quality Design,高立,2015。
[57] J. F. C. Khaw, B. S. Lim, and L. E. N. Lim, "Optimal design of neural networks using the Taguchi method," Neurocomputing, vol. 7, pp. 225-245, 1995.
[58] W. H. Yang and Y. S. Tarng, "Design optimization of cutting parameters for turning operations based on the Taguchi method," Journal of Materials Processing Technology, vol. 84, pp. 122-129, 1998.
[59] C. Jeney, O. Dobay, A. Lengyel, É. Ádám, and I. Nász, "Taguchi optimisation of ELISA procedures," Journal of Immunological Methods, vol. 223, pp. 137-146, 1999.
[60] S. J. Kim, K. S. Kim, and H. Jang, "Optimization of manufacturing parameters for a brake lining using Taguchi method," Journal of Materials Processing Technology, vol. 136, pp. 202-208, 2003.
[61] J. A. Ghani, I. A. Choudhury, and H. H. Hassan, "Application of Taguchi method in the optimization of end milling parameters," Journal of Materials Processing Technology, vol. 145, pp. 84-92, 2004.
[62] K.-T. Chiang, "Optimization of the design parameters of Parallel-Plain Fin heat sink module cooling phenomenon based on the Taguchi method," International Communications in Heat and Mass Transfer, vol. 32, pp. 1193-1201, 2005.
[63] M. Nalbant, H. Gökkaya, and G. Sur, "Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning," Materials & Design, vol. 28, pp. 1379-1385, 2007.
[64] İ. Asiltürk and S. Neşeli, "Multi response optimisation of CNC turning parameters via Taguchi method-based response surface analysis," Measurement, vol. 45, pp. 785-794, 2012.
[65] 蘇芳儀,厚度對氧化銦錫/聚乙烯對苯二甲酸酯(ITO/PET)薄膜熱膨脹係數之影響,國立中山大學機械與機電工程學系,碩士論文,2011。
[66] 李國誌,應用數位影像關係法於微試件變形之量測,國立成功大學機械工程學系,碩士論文,2002。
[67] E. Kreyszig, "Advanced Engineering Mathematics," John Wiley and Sonss, Inc., New York, USA, 1999.
[68] 吳家勝,數位影像相關法於三維變形量測之新應用,國立中山大學機械與機電工程學系,碩士論文,2009。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code