Responsive image
博碩士論文 etd-0718117-114520 詳細資訊
Title page for etd-0718117-114520
論文名稱
Title
感官線索及毒液存量對夜行性徘徊性蜘蛛—白額高腳蛛 (Heteropoda venatoria)獵物選擇之影響
Influence of sensory cues and venom availability on the prey-selection of nocturnal wandering spider, Heteropoda venatoria (Araneae: Sparassidae)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-27
繳交日期
Date of Submission
2017-08-20
關鍵字
Keywords
白額高腳蛛、多重感官線索、最適捕食理論、感官線索、毒液最佳化假說、毒液靈敏度
Heteropoda venatoria, sensory cues, multimodal sensory cues, venom optimization hypothesis, venom sensitivity, Optimal Foraging Theory
統計
Statistics
本論文已被瀏覽 5820 次,被下載 21
The thesis/dissertation has been browsed 5820 times, has been downloaded 21 times.
中文摘要
最適捕食理論旨在了解並預測動物在不同情況下所做的各種捕食決定。捕食者會運用不同類型的感官模式來偵測及定位獵物。前人研究顯示,多重感官模式較單一感官模式更更能增加傳訊者的被偵測性與訊號的準確度,也更能提高接收者的反應率並減少反應時間;感官線索的利用會因接收者的性別而有差異;捕食者本身的狀態也會影響捕食的行為。毒液最佳化假說認為有毒的生物會為了確保高成本的毒液能有效率地使用,在毒液存量不足下會降低使用率或者挑選體型較小、較好捕捉的獵物。另外,不同性別對於感官線索的利用也會有所差異。為了瞭解蜘蛛對於不同感官線索模式的運用,我以夜行性徘徊性的白額高腳蛛作為研究對象,探討在無振動線索下,視覺及嗅覺感官線索對於不同毒液存量雄雌蛛捕食行為之影響。結果顯示,白額高腳蛛在無振動線索時,能利用視覺及嗅覺合併線索偵測並觸發攻擊行為。相較於單一感官線索,雙重感官線索有較高的攻擊率。在獵物移動的情況下,可以分辨出人工及昆蟲兩種類型的獵物。在毒液存量少的情況下蜘蛛攻擊率會下降,選擇毒液靈敏度高的獵物,支持毒液最佳化假說。研究顯示白額高腳蛛的捕食行為,會受到感官模式及毒液存量的影響,但不受性別影響。
Abstract
Optimal Foraging Theory (OFT) aims to explain and predict the foraging behavior of animals. Predators may use several sensory modalities to detect and locate prey. Previous studies showed the use of multimodal sensory cues can improve the detection of sender, enhance the response from receiver, and lower the reaction latency. Moreover, the use of sensory cues showed differences between sexes of predators in different kinds of animals. Besides the detection of prey cues, the condition of predator can also influence its behavior. Venom optimization hypothesis hypothesized that venomous animal without enough venom tend to attack a prey small-sized, easy-to-handle in order to use its high-cost venom economically. In addition, the using of sensory cues might vary between sexes. To test how modalities of visual and olfactory cues would influence the prey capture behavior of spider in different venom availabilities without vibratory cues, the nocturnal crusorial spider, Heteropoda venatoria was used in the study. The results showed visual and olfactory cues combined would elicit attack behavior of H. venatroia. Multimodal sensory cues attracted more attacks than unimodal one. Spider can tell simulated prey and insects apart only in prey’s moving state. Spiders decreased the attack frequency and chose prey with high-venom-sensitive after venom depletion, the result supported venom optimization hypothesis. This study showed the hunting behavior of H. venatoria would be influenced by sensory modalities and venom availabilities but not by sex.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
Contents vi
Table Legend vii
Figure Legend ix
Introduction 1
Materials and Methods 8
Organism studied 8
Collection and housing of spiders 9
Prey items 10
Measurement of venom sensitivity of living prey 11
Prey-choice experiment 13
Statistical analysis 16
Results 18
Response to sensory cues under full venom 18
Venom availability 20
Influence of venom sensitivity 20
Sex of spider 21
Discussion 24
Sensory cues 24
Venom availability affects spider’s prey preference 29
Prey’s venom sensitivity 30
Sex of spider 32
Tables 33
Figures 44
Literature Cited 56
參考文獻 References
Aguilar-Argüello, S. O., and J. H. García-chávez. 2015. Importance of hunger and prey type on predatory behavior stages in Corythalia albicincta (Araneae : Salticidae). Journal of Arachnology 43:143–151.
Airamé, S., and P. Sierwald. 2000. Hunting and feeding behavior of one Heteropoda species in lowland rainforest on Borneo (Aranae, Sparassidae). Journal of Arachnology 28:251–253.
Barth, F. G. 1985. Neuroethology of the spider vibration sense. Pp. 203–229 in F. G. Barth, ed. Neurobiology of Arachnids. Springer, Berlin, Germany.
Barth, F. G. 1998. The vibrational sense of spiders. Pp. 228–278 in R. R. Hoy, and R. R. Fay, eds. Comparative Hearing: Insects. Springer, New York, USA.
Barth, F. G. 2004. Spider mechanoreceptors. Current Opinion in Neurobiology 14:415–422.
Boevé, J. L., L. Kuhn-Nentwig, S. Keller, and W. Nentwig. 1995. Quantity and quality of venom released by a spider (Cupiennius salei, Ctenidae). Toxicon 33:1347–1357.
Borchers, H. W., H. Burghagen, and J. P. Ewert. 1978. Key stimuli of prey for toads (Bufo bufo L.): Configuration and movement patterns. Journal of Comparative Physiology 128:189–192.
Campione, E., and A. Schmid. 2014. Brightness discrimination in the day- and night- adapted wandering spider Cupiennius salei. Journal of Experimental Biology 217:2704–2709.
Candolin, U. 2003. The use of multiple cues in mate choice. Biological Reviews 78:575–595.
Charnov, E. L. 1982. The Theory of Sex Allocation. Princeton University Press, Princeton, New Jersey, USA.
Charnov, E. L., and G. H. Orians. 1973. Optimal Foraging: Some Theoretical Explorations. Doctoral Dissertation, University of Washington, Seattle, USA.
Christian, L. 2012. The Spider Heteropoda venatoria and Its Visual System. Master Thesis, University of Vienna, Austria.
Dugon, M. M., and W. Arthur. 2012a. Comparative studies on the structure and development of the venom-delivery system of centipedes, and a hypothesis on the origin of this evolutionary novelty. Evolution and Development 14:128–137.
Dugon, M. M., and W. Arthur. 2012b. Prey orientation and the role of venom availability in the predatory behaviour of the centipede Scolopendra subspinipes mutilans (Arthropoda: Chilopoda). Journal of Insect Physiology 58:874–880.
Dumpert, K. 1978. Spider odor receptor: electrophysiological proof. Experientia 34:754–756.
Edwards, G. B. 2009. Huntsman Spider, Heteropoda venatoria (Linnaeus) (Arachnida : Araneae : Sparassidae). Featured Creatures EENY-160:1-3, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Florida, USA.
Fenk, L. M., T. Hoinkes, and A. Schmid. 2010. Vision as a third sensory modality to elicit attack behavior in a nocturnal spider. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 196:957–961.
Friedel, T., and W. Nentwig. 1989. Immobilizing and lethal effects of spider venoms on the cockroach and the common mealbeetle. Toxicon 27:305–316.
Gaskett, A. C. 2007. Spider sex pheromones: emission, reception, structures, and functions. Biological Reviews 82:27–48.
Givens, R. P. 1978. Dimorphic foraging strategies of a salticid spider (Phidippus audax). Ecology 59:309–321.
Hayes, W. K. 1995. Venom metering by juvenile prairie rattlesnakes, Crotalus v. viridis: effects of prey size and experience. Animal Behaviour 50:33–40.
Hayes, W. K. 2008. The snake venom-metering controversy: levels of analysis, assumptions, and evidence. Pp. 1–30 in W. K. Hayes, K. R. Beaman, and S. P. Bush, eds. The Biology of Rattlesnakes. Loma Linda University Press, Loma Linda, California, USA.
Hebets, E. A., and D. R. Papaj. 2005. Complex signal function: developing a framework of testable hypotheses. Behavioral Ecology and Sociobiology 57:197–214.
Hebets, E. A., and G. W. Uetz. 1999. Female responses to isolated signals from multimodal male courtship displays in the wolf spider genus Schizocosa (Araneae: Lycosidae). Animal Behaviour 57:865–872.
Higham, J. P., and E. A. Hebets. 2013. An introduction to multimodal communication. Behavioral Ecology and Sociobiology 67:1381–1388.
Hostettler, S., and W. Nentwig. 2006. Olfactory information saves venom during prey-capture of the hunting spider Cupiennius salei (Araneae: Ctenidae). Functional Ecology 20:369–375.
Kuhn-Nentwig, L., J. Schaller, and W. Nentwig. 2004. Biochemistry, toxicology and ecology of the venom of the spider Cupiennius salei (Ctenidae). Toxicon 43:543–553.
Kuhn-Nentwig, L., R. Stöcklin, and W. Nentwig. 2011. Venom composition and strategies in spiders. Is everything possible? Advances in Insect Physiology 40:1- 86.
Lin, T. S., S. Zhang, C. P. Liao, E. A. Hebets, and I. M. Tso. 2015. A dual function of white coloration in a nocturnal spider Dolomedes raptor (Araneae: Pisauridae). Animal Behaviour 108:25–32.
Luthardt, G., and G. Roth. 1979. The influence of prey experience on movement pattern preference in Salamandra salamandra (L.). Zeitschrift fur Tierpsychologie 51:252–259.
Malli, H., L. Kuhn-Nentwig, H. Imboden, and W. Nentwig. 1999. Effects of size, motility and paralysation time of prey on the quantity of venom injected by the hunting spider Cupiennius salei. Journal of Experimental Biology 202:2083– 2089.
McCue, M. D. 2006. Cost of producing venom in three north American pitviper species. Copeia 2006:818–825.
Mischiati, M., H.-T. Lin, P. Herold, E. Imler, R. Olberg, and A. Leonardo. 2014. Internal models direct dragonfly interception steering. Nature 517:1–13.
Morgenstern, D., and G. F. King. 2013. The venom optimization hypothesis revisited. Toxicon 63:120–128.
Munoz, N. E., and D. T. Blumstein. 2012. Multisensory perception in uncertain environments. Behavioral Ecology 23:457–462.
Nelsen, D. R., W. Kelln, and W. K. Hayes. 2014. Poke but don’t pinch: Risk assessment and venom metering in the western black widow spider, Latrodectus hesperus. Animal Behaviour 89:107–114.
Nentwig, W., and C. Wissel. 1986. A comparison of prey length among spiders. Oecologia 68:595–600.
Neuhofer, D., R. Machan, and A. Schmid. 2009. Visual perception of motion in a hunting spider. Journal of Experimental Biology 212:2819–2823.
Oron, U. 1973. Regulation of protein synthesis in the venom gland of viperid snakes. Journal of Cell Biology 56:177–190.
Partan, S. R., and P. Marler. 1999. Communication goes multimodal. Science 283:1272–1273.
Partan, S. R., and P. Marler. 2005. Issues in the classification of multimodal communication signals. American Naturalist 166:231–245.
Perret, B. A. 1977. Venom regeneration in tarantula spiders-I. analysis of venom produced at different time intervals. Comparative Biochemistry and Physiology- Part A: Physiology 56:607–613.
Persons, M. H. 1999. Hunger effects on foraging responses to perceptual cues in immature and adult wolf spiders (Lycosidae). Animal behaviour 57:81–88.
Persons, M. H., and A. L. Rypstra. 2000. Preference for chemical cues associated with recent prey in the wolf spider Hogna helluo (Araneae: Lycosidae). Ethology 106:27–35.
Persons M. H., and G. W. Uetz. 1996a. Wolf spiders vary patch residence time in the presence of chemical cues from prey (Araneae, Lycosidae). Journal of Arachnology 24:76–79.
Persons, M. H., and G. W. Uetz. 1996b. The influence of sensory information on patch residence time in wolf spiders (Araneae: Lycosidae). Animal Behaviour 51:1285–1293.
Persons, M. H., and G. W. Uetz. 1997. The effect of prey movement on attack behavior and patch residence decision rules of wolf spiders (Araneae: Lycosidae). Journal of Insect Behavior 10:737–752.
Persons, M. H., and G. W. Uetz. 1999. Age and sex-based differences in the use of prey sensory cues in wolf Spiders (Araneae: Lycosidae). Journal of Insect Behavior 12:723–736.
Punzo, F., and O. Kukoyi. 1997. The effects of prey chemical cues on patch residence time in the wolf spider Trochosa parthenus (Chamberlin) (Lycosidae) and the lynx spider Oxyopes salticus Hentz (Oxyopidae). Bulletin of the British Arachnological Society 10(9):323–326.
Pyke, G. H. 1984. Optimal foraging theory: a critical review. Annual Review of Ecology and Systematics 15:523–575.
Pyke, G. H., H. R. Pulliam, and E. L. Charnov. 1977. Optimal foraging: a selective review of theory and tests. Quarterly Review of Biology 52:137–154.
Rotenberg, D., E. S. Bamberger, and E. Kochva. 1971. Studies on ribonucleic acid synthesis in the venom glands of Vipera palaestinae (Ophidia, Reptilia). Biochemical Journal 121:609–12.
Roth, G. 1978. The role of stimulus movement patterns in the prey catching behavior of Hydromantes genei (Amphibia, Plethodontidae). Journal of Comparative Physiology 123:261–264.
Rovner, J. S. 1980. Vibration in Heteropoda venatoria (Sparassidae): A third method of sound production in spiders. Journal of Arachnology:193–200.
Rovner, J. S. 1996. Conspecific interactions in the lycosid spider Rabidosa rabida: the roles of different senses. Journal of Arachnology 24:16–23.
Rowe, C. 1999. Receiver psychology and the evolution of multicomponent signals. Animal Behaviour 58:921–931.
Rypstra, A. L., A. M. Schlosser, P. L. Sutton, and M. H. Persons. 2009. Multimodal signalling: the relative importance of chemical and visual cues from females to the behaviour of male wolf spiders (Lycosidae). Animal Behaviour 77:937–947.
Scheffer, S. J., G. W. Uetz, and G. E. Stratton. 1996. Sexual selection, male morphology, and the efficacy of courtship signalling in two wolf spiders (Araneae: Lycosidae). Behavioral Ecology and Sociobiology 38:17–23.
Thoen, H. H., M. J. How, T. H. Chiou, and J. Marshall. 2014. A different form of color vision in mantis shrimp. Science 343:411–413.
Tiedemann, K. 1993. Visual brightness discrimination of the jumping spider Menemerus bivittatus (Araneae, Salticidae). Journal of Arachnology 21:1–5.
Uetz, G. W., and J. A. Roberts. 2002. Multisensory cues and multimodal communication in spiders: insights from video/audio playback studies. Brain, Behavior and Evolution 59:222–230.
Uetz, G. W., J. A. Roberts, and P. W. Taylor. 2009. Multimodal communication and mate choice in wolf spiders: female response to multimodal versus unimodal signals. Animal Behaviour 78:299–305.
Uhl, G., and D. O. Elias. 2011. Communication. Pp. 127–190 in M. E. Heberstein, ed. Spider Behaviour: Versatility and Flexibility. Cambridge University Press, Cambridge, U.K.
Wigger, E., L. Kuhn-Nentwig, and W. Nentwig. 2002. The venom optimisation hypothesis: a spider injects large venom quantities only into difficult prey types. Toxicon 40:749–752.
Witt, P. N., and J. S. Rovner. 1983. Spider communication: mechanisms and ecological significance. Quarterly Review of Biology 58:293–293.
Wullschleger, B., and W. Nentwig. 2002. Influence of venom availability on a spider’s prey-choice behaviour. Functional Ecology 16:802–807.
Young, B. A., and K. Zahn. 2001. Venom flow in rattlesnakes: mechanics and metering. Journal of Experimental Biology 204:4345–4351.
Young, B. A., C. E. Lee, and K. M. Daley. 2002. Do snakes meter venom? BioScience 52:1121-1126.
Zhang, S., H. L. Chen, K. Y. Chen, J. J. Huang, C. C. Chang, D. Piorkowski, C. P. Liao, and I. M. Tso. 2015. A nocturnal cursorial predator attracts flying prey with a visual lure. Animal Behaviour 102:119–125.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code