Responsive image
博碩士論文 etd-0718117-150715 詳細資訊
Title page for etd-0718117-150715
論文名稱
Title
單層石墨烯與三級丁氧基之反應機構研究
Study of tert-Butoxy Radical Reaction Mechanism on Metal-Supported Single-Layer Graphene
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-08-16
繳交日期
Date of Submission
2017-08-18
關鍵字
Keywords
基質隔離、自由基反應、亞硝酸正丁酯、化學氣相沉積石墨烯、超高真空
Matrix isolation, tert-butyl nitrite, Radical reaction, Ultrahigh vacuum, CVD-grown graphene
統計
Statistics
本論文已被瀏覽 5747 次,被下載 25
The thesis/dissertation has been browsed 5747 times, has been downloaded 25 times.
中文摘要
先前的研究指出,石墨烯的化學惰性可以囚禁自由基並觀察自由基反應。我選用di-tert-butyl peroxide (DTBP)、tert-butanol (TBA)以及tert-butyl nitrite (TBN)作為tert-butoxy自由基前驅物,以365 nm LED做光解反應的光源,在超高真空系統中,利用程溫脫附(TPD)以及反射式吸收紅外光譜(RAIRS)即時即地觀測光反應變化與產物。
TBN質譜(m/z 88)以及N=O震動(1620 cm-1)訊號隨照光時間的下降證實了光解反應的進行,照光後加熱過程隨之出現的產物包括;TBA、isobutene、acetone皆低於200 K就生成脫附。而隨著TBN吸附量的增加也會經由radical coupling產生DTBP。有趣的是,比較TBN於Cu (111)上的化學行為,形成的oxametallacycle中間體可以穩定存活至550 K經重組產生TBA與isobutene。沉積在銅上的石墨烯在低溫下提供了另一條自由基反應路徑,此結果暗示積碳不一定視為催化劑之毒化物。反之,反應的選擇性甚至可以被well-defined的石墨烯所調控。
Abstract
Our previous work found that graphene enables radical species to be trapped and their on-surface chemistry to be revealed. DTBP, TBA and TBN were utilized as the precursors for generating tert-butoxy radicals in conjunction with 365 nm UV light as the light source for the photolysis. Under ultra-high vacuum conditions, utilizing temperature-programmed desorption (TPD) and reflection-absorption infrared spectroscopy (RAIRS) can in situ observe the transformations and products of the photoreaction.
The mass signals (m/z 88) and the vibration mode of N=O (1620 cm-1) were found to decrease upon the illumination, indicating the accessibility of the photolysis reaction. Post-irradiation heating rendered TBA, isobutene and acetone desorption at a temperature as low as 200 K. In addition, by increasing the exposure of TBN on graphene, DTBP was produced via radical coupling. Intriguingly, unlike graphene, TBN on clean Cu (111) would form a stable oxametallacycle intermediate to 550 K, followed by conversion to TBA and isobutene. Well-defined carbon species, such as graphene, should not be treated as catalytic poison material, instead, it provides a new reaction pathway so that the catalyst selectivity might be tuned.
目次 Table of Contents
Chapter 1. Introduction 1
1.1 Background information 1
1.2 Research motivation 8
Chapter 2. Experimental Section 10
2.1 Ultrahigh Vacuum System 10
2.2.1 Materials 12
2.2.2 Preparation of graphene 13
2.3 Temperature-programmed desorption spectroscopy (TPD) 15
2.4 Reflection-absorption infrared spectroscopy (RAIRS) 18
2.5 Raman spectroscopy 22
2.6 Density functional theory (DFT) calculations 24
2.7 UV-LED spot light source 25
2.8 Reagents 27
Chapter 3. Results 28
3.1 Thermochemistry and photochemistry of di-tert-butyl peroxide (DTBP) on graphene 28
3.2 Thermochemistry and photochemistry of tert-butanol (TBA) on graphene 35
3.3.1 Photolysis of tert-butyl nitrite (TBN) on graphene 40
3.3.2 Thermolysis of TBN on graphene 44
3.3.3 Photochemistry of TBN on graphene 49
3.4 Thermochemistry and photochemistry of TBN on Cu (111) 59
Chapter 4. Discussion and Conclusions 64
4.1 Discussion 64
4.2 Conclusions 71
Chapter 5. References. 73
參考文獻 References
1. Novoselov, K. S.; Fal, V.; Colombo, L.; Gellert, P.; Schwab, M.; Kim, K., A roadmap for graphene. Nature 2012, 490 (7419), 192-200.
2. Koppens, F.; Coleman, J.; Morandi, V.; Tredicucci, A., Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7, 4598-4810.
3. Torres, L. E. F.; Roche, S.; Charlier, J.-C., Introduction to graphene-based nanomaterials: from electronic structure to quantum transport. Cambridge University Press: 2014.
4. Neto, A. C.; Guinea, F.; Peres, N. M.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. RMP 2009, 81 (1), 109.
5. Stankovich, S.; Dikin, D. A.; Dommett, G. H.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Graphene-based composite materials. Nature 2006, 442 (7100), 282-286.
6. Machado, B. F.; Serp, P., Graphene-based materials for catalysis. Catal. Sci. Tech. 2012, 2 (1), 54-75.
7. Su, C.; Loh, K. P., Carbocatalysts: graphene oxide and its derivatives. Acc. Chem. Res. 2012, 46 (10), 2275-2285.
8. Wang, H. X.; Wang, Q.; Zhou, K. G.; Zhang, H. L., Graphene in Light: Design, Synthesis and Applications of Photo‐active Graphene and Graphene‐Like Materials. Small 2013, 9 (8), 1266-1283.
9. Mak, K. F.; Ju, L.; Wang, F.; Heinz, T. F., Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun. 2012, 152 (15), 1341-1349.
10. Loh, K. P.; Bao, Q.; Ang, P. K.; Yang, J., The chemistry of graphene. J. Mater. Chem. 2010, 20 (12), 2277-2289.
11. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N., Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8 (3), 902-907.
12. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-669.
13. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K., Fine structure constant defines visual transparency of graphene. Science 2008, 320 (5881), 1308-1308.
14. Niyogi, S.; Bekyarova, E.; Itkis, M. E.; McWilliams, J. L.; Hamon, M. A.; Haddon, R. C., Solution properties of graphite and graphene. J. Am. Chem. Soc. 2006, 128 (24), 7720-7721.
15. Liao, L.; Peng, H.; Liu, Z., Chemistry makes graphene beyond graphene. J. Am. Chem. Soc. 2014, 136 (35), 12194-12200.
16. Novoselov, K. S.; Geim, A. K.; Morozov, S.; Jiang, D.; Katsnelson, M.; Grigorieva, I.; Dubonos, S.; Firsov; AA, Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438 (7065), 197-200.
17. Liu, H.; Ryu, S.; Chen, Z.; Steigerwald, M. L.; Nuckolls, C.; Brus, L. E., Photochemical reactivity of graphene. J. Am. Chem. Soc. 2009, 131 (47), 17099-17101.
18. Yan, L.; Zheng, Y. B.; Zhao, F.; Li, S.; Gao, X.; Xu, B.; Weiss, P. S.; Zhao, Y., Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chem. Soc. Rev. 2012, 41 (1), 97-114.
19. Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S., Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 2010, 22 (35), 3906-3924.
20. Park, J.; Yan, M., Covalent functionalization of graphene with reactive intermediates. Acc. Chem. Res. 2012, 46 (1), 181-189.
21. Zhang, L.; Zhou, L.; Yang, M.; Liu, Z.; Xie, Q.; Peng, H.; Liu, Z., Photo‐induced free radical modification of graphene. Small 2013, 9 (8), 1134-1143.
22. Zhou, L.; Zhou, L.; Yang, M.; Wu, D.; Liao, L.; Yan, K.; Xie, Q.; Liu, Z.; Peng, H.; Liu, Z., Free radical reactions in two dimensions: a case study on photochlorination of graphene. Small 2013, 9 (8), 1388-1396.
23. Pinson, J.; Podvorica, F., Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem. Soc. Rev. 2005, 34 (5), 429-439.
24. Sinitskii, A.; Dimiev, A.; Corley, D. A.; Fursina, A. A.; Kosynkin, D. V.; Tour, J. M., Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS nano 2010, 4 (4), 1949-1954.
25. Gao, C.; He, H.; Zhou, L.; Zheng, X.; Zhang, Y., Scalable functional group engineering of carbon nanotubes by improved one-step nitrene chemistry. Chem. Mater. 2008, 21 (2), 360-370.
26. Choi, J.; Kim, K.-j.; Kim, B.; Lee, H.; Kim, S., Covalent functionalization of epitaxial graphene by azidotrimethylsilane. J. Phys. Chem. C. 2009, 113 (22), 9433-9435.
27. Ismaili, H.; Geng, D.; Sun, A. X.; Kantzas, T. T.; Workentin, M. S., Light-activated covalent formation of gold nanoparticle–graphene and gold nanoparticle–glass composites. Langmuir 2011, 27 (21), 13261-13268.
28. Zhong, X.; Jin, J.; Li, S.; Niu, Z.; Hu, W.; Li, R.; Ma, J., Aryne cycloaddition: highly efficient chemical modification of graphene. Chemical Commun. 2010, 46 (39), 7340-7342.
29. Chu, Y.-L.; Chen, Y.-A.; Li, W.-C.; Chu, J.-H.; Chen, C.-H.; Chiang, C.-M., Mechanistic insights into light-driven graphene-induced peroxide decomposition: radical generation and disproportionation. Chemical Commun. 2016, 52 (59), 9291-9294.
30. Whittle, E.; Dows, D. A.; Pimentel, G. C., Matrix isolation method for the experimental study of unstable species. J. Chem. Phys. 1954, 22 (11), 1943-1943.
31. Norman, I.; Porter, G., Trapped atoms and radicals in a glass ‘cage’. Nature 1954, 174 (4428), 508-509.
32. Camplin, J. P.; McCash, E. M., A RAIRS study of higher alkoxide species on oxygen-modified Cu (100). J. Chem. Soc. Faraday Trans. 1996, 92 (23), 4695-4699.
33. Bowker, M.; Madix, R., XPS, UPS and thermal desorption studies of alcohol adsorption on Cu (110): I. Methanol. Surf. Sci. 1980, 95 (1), 190-206.
34. XPS, U., thermal desorption studies of alcohol adsorption on copper (110). II. Higher alcohols Bowker, M.; Madix, RJ. Surf. Sci. 1982, 116 (3), 549-72.
35. Davis, J.; Barteau, M., Decarbonylation and decomposition pathways of alcohol's on Pd (111). Surf. Sci. 1987, 187 (2-3), 387-406.
36. Weissermel, K.; Arpe, H.-J., Industrial organic chemistry. John Wiley & Sons: 2008.
37. Yan, X.-M.; Kim, C.; White, J., t-Butyl nitrite (TBN) and t-butyl alcohol (TBA) reactions on clean and O-covered Rh. J. Phys. Chem. B 2001, 105 (17), 3587-3593.
38. Bol, C.; Friend, C., Control of oxidation selectivity by alkyl substitution: the reactions of t-butyl iodide and t-butanethiol on Rh (111)-p (2× 1)-O. Surf. Sci. 1996, 364 (2), L549-L554.
39. Attard, G.; Chibane, K.; Ebert, H.; Parsons, R., The adsorption and decomposition of methanol on Pt (110). Surf. Sci. 1989, 224 (1-3), 311-326.
40. Chen, T.-L.; Yilmaz, M.; Potapenko, D.; Kou, A.; Stojilovic, N.; Osgood, R., Chemisorption of tert-butanol on Si (100). Surf. Sci. 2008, 602 (21), 3432-3437.
41. Brainard, R. L.; Madix, R. J., Oxidation of tert-butyl alcohol to isobutylene oxide: rate-limiting carbon-hydrogen activation by a Ag (110) surface. J. Am. Chem. Soc. 1987, 109 (26), 8082-8083.
42. Brainard, R. L.; Madix, R. J., Enhanced stability of t-butanol reaction intermediates on oxygen covered Cu (110): Cleavage of unactivated C H bonds on metal surfaces. Surf. Sci. 1989, 214 (3), 396-406.
43. Ihm, H.; Scheer, K.; Celio, H.; White, J., Alkoxide synthesis from methyl and tert-butyl nitrite on Cu (100). Langmuir 2001, 17 (3), 786-790.
44. Zhao, W.; Kim, C.; White, J.; Kim, S., Photodissociation dynamics of tert-butyl nitrite on Ag (111): Characterization of translationally and internally excited NO fragments. J. Phys. Chem. A 2001, 105 (11), 2234-2239.
45. Liao, L.; Song, Z.; Zhou, Y.; Wang, H.; Xie, Q.; Peng, H.; Liu, Z., Photoinduced methylation of graphene. Small 2013, 9 (8), 1348-1352.
46. Wenge, A. M.; Schmaunz, A.; Kensy, U.; Dick, B., Photodissociation dynamics of tert-butylnitrite following excitation to the S 1 and S 2 states. A study by velocity-map ion-imaging and 3D-REMPI spectroscopy. PCCP 2012, 14 (19), 7076-7089.
47. Finke, H.; Spiecker, H.; Andresen, P., The photodissociation of tert-butyl nitrite at 193 nm. J. Chem. Phys. 1999, 110 (10), 4777-4782.
48. McMillan, G., Photolysis of Alkyl Nitrites. I. tert-Butyl Nitrite. J. Am. Chem. Soc. 1962, 84 (21), 4007-4011.
49. Weston, G. F., Ultrahigh vacuum practice. Elsevier: 2013.
50. Attard, G.; Barnes, C., Surfaces. Oxford Chemistry Primers 1998, 59 (1), ALL-ALL.
51. Friedbacher, G.; Bubert, H., Surface and Thin Film Analysis: A Compendium of Principles, Instrumentation, and Applications. John Wiley & Sons: 2011.
52. Malard, L.; Pimenta, M.; Dresselhaus, G.; Dresselhaus, M., Raman spectroscopy in graphene. Phys. Rep. 2009, 473 (5), 51-87.
53. Wang, H.; Wang, Y.; Cao, X.; Feng, M.; Lan, G., Vibrational properties of graphene and graphene layers. J. Raman Spectrosc. 2009, 40 (12), 1791-1796.
54. Gross, E. K.; Dreizler, R. M., Density functional theory. SSBM 2013, 337.
55. Calvert, J. G.; Pitts, J. N., Photochemistry. 1966.
56. Castle, K. J.; Kong, W., Directions of transition dipole moments of t-butyl nitrite obtained via orientation with a strong, uniform electric field. J. Chem. Phys. 2000, 112 (23), 10156-10161.
57. Yan, X.-M.; Robbins, M.; White, J., Thermal properties of t-butyl nitrite (TBN) on Cu (111). J. Phys. Chem. B 2004, 108 (49), 18925-18931.
58. Ihm, H.; Medlin, J.; Barteau, M.; White, J., Thermal activation of tert-butyl nitrite on Pt (111): tert-butoxy dehydrogenation and oxametallacycle formation. Langmuir 2001, 17 (3), 798-806.
59. McLaughlin, R. P.; Donald, W. A.; Jitjai, D.; Zhang, Y., Vibrational analysis of n-butyl, isobutyl, sec-butyl and tert-butyl nitrite.SPECTROCHEM ACTA A 2007, 67 (1), 178-187.
60. Tarte, P., Rotational isomerism as a general property of alkyl nitrites. J. Chem. Phys. 1952, 20 (10), 1570-1575.
61. Xu, X.; Friend, C., Partial oxidation without allylic carbon-hydrogen bond activation: the conversion of propene to acetone on rhodium (111)-p (2. times. 1)-O. J. Am. Chem. Soc. 1991, 113 (18), 6779-6785.
62. Barnes, A., Matrix isolation vibrational spectroscopy as a tool for studying conformational isomerism. J. Mol. Struct. 1984, 113, 161-174.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code