Responsive image
博碩士論文 etd-0718117-194840 詳細資訊
Title page for etd-0718117-194840
論文名稱
Title
研究二溴酪氨酸衍生物對TGF-β訊息傳遞的影響
Study the effects of Dibromotyrosine Derivative in TGF-β responsiveness
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-28
繳交日期
Date of Submission
2017-08-18
關鍵字
Keywords
二溴酪氨酸的衍生物、轉型生長因子β、上皮細胞間質轉化、小分子抑制劑
TGF-β, bromotyrosine derivative, small molecular inhibitors, epithelial-to-mesenchymal transition
統計
Statistics
本論文已被瀏覽 5754 次,被下載 775
The thesis/dissertation has been browsed 5754 times, has been downloaded 775 times.
中文摘要
轉型生長因子(Transforming growth factor β1, TGF-β1) 是多胜肽類生長因子家族中的一員,並且參與許多導致腫瘤病變的生物學過程。包括細胞增殖、細胞外基質分泌、細胞貼附、移動、分化和凋亡等。而TGF-β1的訊息傳遞會經由細胞膜上的兩個蛋白質接受器Type I TGF-β receptor (TβR-I) 和Type II TGF-β receptor (TβR-II) 。TGF-β磷酸化Samd 2/3,被磷酸化的Samd2/3會轉移到細胞核內和其他轉錄因子一起調控標的基因的轉錄。TGF-β在癌症的早期階段會藉著抑制細胞增生以及促進細胞凋亡的方式抑制著腫瘤發展。然而在晚期階段TGF-β則會促進腫瘤細胞的生長、侵襲、轉移以及幫助腫瘤細胞逃過免疫系統攻擊。一些能夠抑制細胞TGF-β訊息傳遞的小分子抑制劑,對於治療癌症的研究上有很大的幫助。在研究訊息傳遞路徑間的交互作用上,小分子抑制則是一種很有力的工具。在我們的實驗中,發現一種從美麗海綿屬Pseudoceratina sp.萃取出二溴酪氨酸的衍生物(1′R,5′S,6′S)-2-(3′,5′-dibromo-1′,6′-dihydroxy-4′-oxocyclohex-2′-enyl) acetonitrile (DT),經由抑制TβR-I上的絲氨酸/蘇氨酸激酶,來抑制TGF-β下游訊息的傳遞。為了瞭解DT對TGF-β的訊息傳遞的影響,我們使用了冷光酵素活性分析、西方墨點法、傷口癒合試驗和試管內Activin receptor-like kinase (ALK5)激酶活性試驗等分析方法來研究DT對TGF-β的訊息傳遞的影響,並且使用上皮細胞來研究DT對TGF-β引發上皮細胞間質轉化的抑制作用。在研究中發現,這新型的ALK5抑制劑能有效的抑制TGF-β刺激的Smad2/3磷酸化和Smad2/3的核轉移。另外DT還能抑制TGF-β刺激的上皮細胞間質轉化現象和A549細胞的遷移。我們的研究結果表示DT在未來可以應用在纖維化疾病和癌症的治療。
Abstract
The Transforming growth factor β1 (TGF-β1) is belong to transforming growth factor superfamily. Many tumor lesions process are related to TGF-β1, such as: cell proliferation, extracellular matrix secretion, cell attachment, movement, differentiation and apoptosis. TGF-β1 cell signaling via two protein receptors on membrane which are Type I TGF-β receptor (TβR-I) and Type II TGF-β receptor (TβR-II). TGF-β is activated that lead smad2/3 to phosphorylation, and p-Smad2/3 will transfer to nuclear than regulates the transcription of the target gene with other transcription factor. At cancer early stage, TGF-β will use inhibit cell proliferation and promote cell apoptosis to inhibit cancer growth, but at cancer late stage,instead, TGF-β will promote cancer cell growth, invasion, transfer and help it to escape the immune system attack. There are some small molecule inhibitors which can inhibit TGF-β cell signal transduction have great value at cancer research. Small molecule inhibitor is a powerful tool in research of signal transduction pathway interaction. In this study, we found (1′R,5′S,6′S)-2-(3′,5′- dibromo-1′,6′-dihydroxy-4′-oxocyclohex-2′-enyl) acetonitrile (DT), a bromotyrosine derivate from Pseudoceratina sp., which inhibits the TβR-I serine/threonine kinase then inhibits TGF-β downstream cell signaling. We use such as: luciferase activity assay, western blotting, wound healing assay, in vitro ALK5 kinase assay etc. to know the effect of DT on TGF-β cell signaling, and use epithelial cells to study of the inhibitory effects of DT on TGF-β-induced Smad signaling and epithelial-to-mesenchymal transition. We also confirmed the new ALK5 inhibitor can effectively inhibit TGF-β stimulate smad2/3 to phosphorylation and inhibit smad2/3 transfer to nuclear. In addition, DT also can inhibit TGF-β stimulate epithelial-to-mesenchymal transition and A549 cell metastasis. Our study showed DT can apply to treatment of fibrotic diseases and cancer in the future.
目次 Table of Contents
目 錄
論文審定書…………………………………………………………………………… i
致謝…………………………………………………………………………………... ii
摘要………………………………………………………………………………….. iii
Abstract……………...……………………………………………………………… iv
目錄……………………………………………………………………...…..….…… vi
圖次………………………………………………………………………........…… viii
縮寫表………………………………………………………………...…………...… xi
前言
  TGF-β.................................................................................................................... 1
TGF-β和癌症之間的關係.................................................................................... 3
  TGF-β信號傳遞的小分子抑制劑對癌症治療的影響........................................ 5
DT.......................................................................................................................... 6
材料與方法
一、藥品與化學試劑............................................................................................. 8
二、質體與抗體................................................................................................... 10
三、細胞培養....................................................................................................... 11
四、細胞毒性試驗 (MTT Assay)……………………………………………... 12
五、電穿孔法(Electroporation)............................................................................ 12
六、冷光酵素活性分析(Luciferase Activity Assay)........................................... 13
七、西方墨點法(Western Blotting).................................................................... 13
八、核蛋白萃取(Nuclear Protein Extract).......................................................... 14
九、RNA抽取(RNA Isolation)和反轉錄PCR (Reverse Transcription-PCR, RT-PCR)....................................................................................................... 15
十、聚合酶連鎖反應(Polymerase Chain Reaction, RCP)和洋菜膠電泳法(Agarose gel Electrophoresis)..................................................................................... 16
十一、免疫螢光染色(Immunofluorescence)..................................................... 17
十二、傷口癒合試驗(Wound Healing Assay)................................................... 17
十三、試管內ALK5激酶試驗(In Vitro ALK5 Kinase Assay)......................... 18
十四、統計分析……………………………………………………………….. 18
結果
DT抑制TGF-β刺激Smad2/3的磷酸化.......................................................... 19
DT抑制p-Smad2/3 轉移至細胞核.................................................................. 20
DT抑制TGF-β所誘導的轉錄作用.................................................................. 21
DT通過抑制ALK5的活性來調控TGF-β訊息傳遞路徑.............................. 22
DT減弱TGF-β誘導上皮細胞間質轉化.......................................................... 22
DT抑制TGF-β所誘導的細胞遷移.................................................................. 23
討論............................................................................................................................. 24
參考文獻..................................................................................................................... 62
參考文獻 References
1. Varga, J. & Pasche, B. Transforming growth factor beta as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol 5, 200-6 (2009).
2. Gorelik, L. & Flavell, R.A. Transforming growth factor-β in T-cell biology. Nature Reviews Immunology 2, 46-53 (2002).
3. Derynck, R. & Zhang, Y.E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425, 577-584 (2003).
4. Li, H., Sekine, M., Seng, S., Avraham, S. & Avraham, H.K. BRCA1 Interacts with Smad3 and Regulates Smad3-Mediated TGF-β Signaling during Oxidative Stress Responses. PloS one 4, e7091 (2009).
5. Annes, J.P., Chen, Y., Munger, J.S. & Rifkin, D.B. Integrin αVβ6-mediated activation of latent TGF-β requires the latent TGF-β binding protein-1. The Journal of cell biology 165, 723-734 (2004).
6. Rifkin, D.B. Latent transforming growth factor-β (TGF-β) binding proteins: orchestrators of TGF-β availability. Journal of Biological Chemistry 280, 7409-7412 (2005).
7. Fink, S.P., Mikkola, D., Willson, J.K. & Markowitz, S. TGF-β-induced nuclear localization of Smad2 and Smad3 in Smad4 null cancer cell lines. Oncogene 22, 1317-1323 (2003).
8. Heldin, C.-H., Miyazono, K. & Ten Dijke, P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465-471 (1997).
9. Attisano, L. & Wrana, J.L. Mads and Smads in TGFβ signalling. Current opinion in cell biology 10, 188-194 (1998).
10. Attisano, L. & Wrana, J.L. Signal transduction by the TGF-β superfamily. Science 296, 1646-1647 (2002).
11. Singh, P., Wig, J. & Srinivasan, R. The Smad family and its role in pancreatic cancer. Indian journal of cancer 48, 351 (2011).
12. Derynck, R., Zhang, Y. & Feng, X.-H. Transcriptional activators of TGF-β responses: Smads. Cell 95, 737-740 (1998).
13. Massagué, J., Seoane, J. & Wotton, D. Smad transcription factors. Genes & development 19, 2783-2810 (2005).
14. Yang, L. & Moses, H.L. Transforming growth factor beta: tumor suppressor or promoter? Are host immune cells the answer? Cancer Res 68, 9107-11 (2008).
15. Bierie, B. & Moses, H.L. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6, 506-20 (2006).
16. Nacif, M. & Shaker, O. Targeting transforming growth factor-β (TGF-β) in cancer and non-neoplastic diseases. Journal of Cancer Therapy 2014 (2014).
17. Roberts, A.B. & Wakefield, L.M. The two faces of transforming growth factor β in carcinogenesis. Proceedings of the National Academy of Sciences 100, 8621-8623 (2003).
18. Xu, J., Lamouille, S. & Derynck, R. TGF-β-induced epithelial to mesenchymal transition. Cell research 19, 156-172 (2009).
19. Lamouille, S. & Derynck, R. Cell size and invasion in TGF-β–induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. The Journal of cell biology 178, 437-451 (2007).
20. Seoane, J. & Gomis, R.R. TGF-β Family Signaling in Tumor Suppression and Cancer Progression. Cold Spring Harbor Perspectives in Biology, a022277 (2017).
21. Wakefield, L.M. & Roberts, A.B. TGF-β signaling: positive and negative effects on tumorigenesis. Current opinion in genetics & development 12, 22-29 (2002).
22. Ikushima, H. & Miyazono, K. TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10, 415-24 (2010).
23. Meng, X.-m., Nikolic-Paterson, D.J. & Lan, H.Y. TGF-[beta]: the master regulator of fibrosis. Nature Reviews Nephrology (2016).
24. Border, W.A. & Noble, N.A. Transforming growth factor β in tissue fibrosis. New England Journal of Medicine 331, 1286-1292 (1994).
25. Akhurst, R.J. & Hata, A. Targeting the TGFβ signalling pathway in disease. Nature reviews Drug discovery 11, 790-811 (2012).
26. Angadi, P.V. & Kale, A.D. Epithelial-mesenchymal transition-A fundamental mechanism in cancer progression: An overview. Indian Journal of Health Sciences 8, 77 (2015).
27. Pao, W. et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proceedings of the National Academy of Sciences of the United States of America 101, 13306-13311 (2004).
28. Sordella, R., Bell, D.W., Haber, D.A. & Settleman, J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305, 1163-1167 (2004).
29. Shepherd, F.A. et al. Erlotinib in previously treated non–small-cell lung cancer. New England Journal of Medicine 353, 123-132 (2005).
30. Llovet, J.M. et al. Sorafenib in advanced hepatocellular carcinoma. New England journal of medicine 359, 378-390 (2008).
31. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. New England Journal of Medicine 356, 125-134 (2007).
32. Motzer, R.J. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. New England Journal of Medicine 356, 115-124 (2007).
33. Demetri, G.D. et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. The Lancet 368, 1329-1338 (2006).
34. Suzuki, E. et al. A novel small-molecule inhibitor of transforming growth factor beta type I receptor kinase (SM16) inhibits murine mesothelioma tumor growth in vivo and prevents tumor recurrence after surgical resection. Cancer Research 67, 2351-2359 (2007).
35. Byfield, S.D., Major, C., Laping, N.J. & Roberts, A.B. SB-505124 is a selective inhibitor of transforming growth factor-β type I receptors ALK4, ALK5, and ALK7. Molecular Pharmacology 65, 744-752 (2004).
36. Laping, N. et al. Inhibition of transforming growth factor (TGF)-β1–induced extracellular matrix with a novel inhibitor of the TGF-β type I receptor kinase activity: SB-431542. Molecular pharmacology 62, 58-64 (2002).
37. Yingling, J.M., Blanchard, K.L. & Sawyer, J.S. Development of TGF-β signalling inhibitors for cancer therapy. Nature reviews Drug discovery 3, 1011-1022 (2004).
38. Neuzillet, C. et al. Targeting the TGFβ pathway for cancer therapy. Pharmacology & therapeutics 147, 22-31 (2015).
39. Herbertz, S. et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug design, development and therapy 9, 4479 (2015).
40. Tolcher, A.W. et al. A phase 1 study of anti-TGFβ receptor type-II monoclonal antibody LY3022859 in patients with advanced solid tumors. Cancer chemotherapy and pharmacology 79, 673-680 (2017).
41. Goff, L. et al. Phase I study of PF-03446962, a fully human mab against ALK 1, a TGFβ receptor involved in tumor angiogenesis. Journal of Clinical Oncology 28, 3034-3034 (2010).
42. Chen, C.-L. et al. Euphol from euphorbia tirucalli negatively modulates TGF-β responsiveness via TGF-β receptor segregation inside membrane rafts. PloS one 10, e0140249 (2015).
43. Ahn, M.Y., Jung, J.H., Na, Y.J. & Kim, H.S. A natural histone deacetylase inhibitor, Psammaplin A, induces cell cycle arrest and apoptosis in human endometrial cancer cells. Gynecologic oncology 108, 27-33 (2008).
44. Shankar, S. & Srivastava, R.K. in Programmed Cell Death in Cancer Progression and Therapy 261-298 (Springer, 2008).
45. Córdoba, R., Tormo, N.S., Medarde, A.F. & Plumet, J. Antiangiogenic versus cytotoxic activity in analogues of aeroplysinin-1. Bioorganic & medicinal chemistry 15, 5300-5315 (2007).
46. Martínez-Poveda, B., Rodríguez-Nieto, S., García-Caballero, M., Medina, M.-Á. & Quesada, A.R. The antiangiogenic compound aeroplysinin-1 induces apoptosis in endothelial cells by activating the mitochondrial pathway. Marine drugs 10, 2033-2046 (2012).
47. Su, J.-H. et al. Towards the small and the beautiful: A small dibromotyrosine derivative from Pseudoceratina sp. sponge exhibits potent apoptotic effect through targeting IKK/NFκB signaling pathway. Marine drugs 11, 3168-3185 (2013).
48. Teeyapant, R. et al. Antibiotic and cytotoxic activity of brominated compounds from the marine sponge Verongia aerophoba. Zeitschrift für Naturforschung C 48, 939-945 (1993).
49. Galeano, E., Thomas, O.P., Robledo, S., Munoz, D. & Martinez, A. Antiparasitic bromotyrosine derivatives from the marine sponge Verongula rigida. Marine drugs 9, 1902-1913 (2011).
50. Martínez-Poveda, B. et al. The brominated compound aeroplysinin-1 inhibits proliferation and the expression of key pro-inflammatory molecules in human endothelial and monocyte cells. PloS one 8, e55203 (2013).
51. Kreuter, M.-H. et al. Inhibition of intrinsic protein tyrosine kinase activity of EGF-receptor kinase complex from human breast cancer cells by the marine sponge metabolite (+)-aeroplysinin-1. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 97, 151-158 (1990).
52. Hinterding, K., Knebel, A., Herrlich, P. & Waldmann, H. Synthesis and biological evaluation of aeroplysinin analogues: a new class of receptor tyrosine kinase inhibitors. Bioorganic & medicinal chemistry 6, 1153-1162 (1998).
53. Poncelet, A.-C., De Caestecker, M.P. & Schnaper, H.W. The transforming growth factor-βbgr/SMAD signaling pathway is present and functional in human mesangial cells. Kidney international 56, 1354-1365 (1999).
54. Cobbs, S.L. & Gooch, J.L. NFATc is required for TGFβ-mediated transcriptional regulation of fibronectin. Biochemical and biophysical research communications 362, 288-294 (2007).
55. Widom, R.L., Culic, I., Lee, J.Y. & Korn, J.H. Cloning and characterization of hcKrox, a transcriptional regulator of extracellular matrix gene expression. Gene 198, 407-420 (1997).
56. Gao, S. et al. Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-β signaling. Molecular cell 36, 457-468 (2009).
57. Korchynskyi, O. & ten Dijke, P. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. Journal of Biological Chemistry 277, 4883-4891 (2002).
58. Varley, J., McPherson, C., Zou, H., Niswander, L. & Maxwell, G. Expression of a constitutively active type I BMP receptor using a retroviral vector promotes the development of adrenergic cells in neural crest cultures. Developmental biology 196, 107-118 (1998).
59. Feng, X.-H. & Derynck, R. Ligand-independent activation of transforming growth factor (TGF) β signaling pathways by heteromeric cytoplasmic domains of TGF-β receptors. Journal of Biological Chemistry 271, 13123-13129 (1996).
60. Abe, M. et al. An assay for transforming growth factor-β using cells transfected with a plasminogen activator inhibitor-1 promoter-luciferase construct. Analytical biochemistry 216, 276-284 (1994).
61. Schreiber, E. et al. Astrocytes and glioblastoma cells express novel octamer-DNA binding proteins distinct from the ubiquitous Oct-1 and B cell type Oct-2 proteins. Nucleic Acids Research 18, 5495-5503 (1990).
62. Yung, S. & Davies, M. Response of the human peritoneal mesothelial cell to injury: an in vitro model of peritoneal wound healing. Kidney International 54, 2160-2169 (1998).
63. Liu, I.M. et al. TGFβ‐stimulated Smad1/5 phosphorylation requires the ALK5 L45 loop and mediates the pro‐migratory TGFβ switch. The EMBO journal 28, 88-98 (2009).
64. Wrighton, K.H., Lin, X., Paul, B.Y. & Feng, X.-H. Transforming growth factor β can stimulate Smad1 phosphorylation independently of bone morphogenic protein receptors. Journal of Biological Chemistry 284, 9755-9763 (2009).
65. Samarakoon, R., Overstreet, J.M. & Higgins, P.J. TGF-β signaling in tissue fibrosis: redox controls, target genes and therapeutic opportunities. Cellular signalling 25, 264-268 (2013).
66. Kang, Y. & Massagué, J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118, 277-279 (2004).
67. Liu, R.-Y. et al. JAK/STAT3 signaling is required for TGF-β-induced epithelial-mesenchymal transition in lung cancer cells. International journal of oncology 44, 1643-1651 (2014).
68. Lee, J.M., Dedhar, S., Kalluri, R. & Thompson, E.W. The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J Cell biol 172, 973-981 (2006).
69. Thiery, J.P., Acloque, H., Huang, R.Y. & Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. cell 139, 871-890 (2009).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code