Responsive image
博碩士論文 etd-0719100-183930 詳細資訊
Title page for etd-0719100-183930
論文名稱
Title
應用匹配碼於格狀編碼多重調變係數CPFSK
Trellis Coded Multi-h CPFSK via Matched Codes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
51
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-06-16
繳交日期
Date of Submission
2000-07-19
關鍵字
Keywords
連續相位調變、格狀調變碼、多重調變係數連續相位頻移鍵、環式迴旋碼
ring convolutional code, multi-h CPFSK, trellis coded modulation, continuous phase modulation
統計
Statistics
本論文已被瀏覽 5689 次,被下載 3567
The thesis/dissertation has been browsed 5689 times, has been downloaded 3567 times.
中文摘要
數位調變技術在實際通訊系統中扮演轉換數位符(symbol)訊號成為弦波型式可傳輸訊號(稱為已調變訊modulated signal)的功能方塊, 所以調變器的選取就已大致決定了整個通訊系統的頻寬效益與頻譜形狀, 相關調變技術如BPSK, QPSK, π/4-DQPSK等即為目前數位無線通訊系統所採用。八零年代開始,格狀調變碼(trellis coded modulation, TCM)技術將通道編碼器(channel encoder)與非記憶性數位調變器(如PSK,QAM…)在訊號空間中做適當的群集分割(set-partitioning), 在頻寬效益相同的比較基礎之下, 獲得了可觀的編碼增益。調變碼(coded modulation)的泛稱可以用來說明任何的通道編碼與數位調變器(記憶性或非記憶性)在設計上無可避免的密切結合。
全球行動通訊系統(Global System for Mobile Communications, GSM)是我國目前第二代數位行動電話所採用的系統, 其調變技術為高斯最小相移鍵(Gaussian minimum shift keying, GMSK), 此種調變技術是連續相位頻移鍵(continuous phase frequency shift keying, CPFSK)的一種特例, 屬於一般性的連續相位調變(CPM)技術, 多重調變係數連續相位調變(Multi-h CPM)時變性地更改受調變訊號的調變係數, 藉由適當搜尋選取調變係數的組合, 功率與頻寬效率又超越固定調變係數連續相位調變, 獲得了編碼增益。
本論文首先將分解模型的表示法推廣到多重調變係數連續相位調變(Multi-h CPM), 此模型以連續相位編碼器(continuous phase encoder, CPE)來顯示調變方式中隱含的編碼或訊號相關性的成分,而非記憶性調變器(memoryless modulator, MM)則將連續相位編碼器(CPE)的輸出對應產生弦式的傳送訊號。 任何一個多重調變係數連續相位調變(Multi-h CPM)的模式都可以分解為相對應的連續相位編碼器(CPE)與非記憶性調變器(MM)的組合, 從連續相位編碼器(CPE)的總狀態數的可能減少, 和傳統直接表示法比較, 具備了複雜度減低的優點, 若進一步考慮格狀調變碼(TCM)技術與多重調變係數連續相位調變(Multi-h CPM)的結合, 分解模型表示法的優勢將更加明顯。
多重調變係數連續相位頻移鍵(multi-h CPFSK)的調變技術結合格狀調變碼(TCM)技術, 亦即將迴旋編碼器(convolutional encoder, CE)與具記憶性的數位調變器多調變係數連續相位頻移鍵(multi-h CPFSK)結合, 在頻譜與功率效率取捨之間, 以及合理的編碼調變器複雜度選取與設計基礎下, 獲取潛在的編碼增益(coding gain)。格狀調變碼多重調變係數連續相位頻移鍵(Trellis-coded multi-h CPFSK)在可加性白高斯雜訊(AWGN)通道的性能由最小距離(minimum distance)可以近似地評估, 在系統複雜度與頻寬使用等比較基礎之下, 最佳的最小距離(minimum distance)與編碼增益(coding gain)以及所使用的迴旋編碼器(CE)將被完整地搜尋與整理, 其性能在迴旋編碼器(CE)與多調變係數相位編碼(multi-h phase codes)的選擇與組合下, 存在有很大的彈性與潛力能在不同通道條件設定下找出適當的組合。
Abstract
The continuous phase frequency shift keying (CPFSK) is a modulation method with memory. The memory results from the phase continuity of the transmitted carrier phase from one signal interval to the next. For a specific form of phase, CPFSK becomes a special case of a general class of continuous phase modulation (CPM) signals. In this thesis, we extend the decomposition model of single-h CPM to the multi-h CPM decomposition model. Based on this decomposition model approach the multi-h CPFSK schemes are evaluated by searching the desired multi-h phase codes at a given number of states.
Moreover, the trellis coded multi-h CPFSK schemes, which are the combination of the (binary) convolutional codes with the multi-h CPFSK schemes, are searching by optimization procedure via the matched encoding method. To further improve the performance, in terms of the coding gain, the ring convolutional codes are applied to the continuous phase encoder (CPE) of the proposed multi-h CPFSK schemes. Due to the fact that the code structure of the ring convolutional codes is similar to the CPE, this will result in having simple and efficient combination of the convolutional codes with the multi-h CPFSK signaling schemes.
目次 Table of Contents
Acknowledgement………………………………………………………………………i
Abstract…………………………………………………………………………………ii
Contents…………………………………………………………………………………iii
Lists of Figures and Tables……………………………………………………………v
Chapter 1 Introduction………………………………………………………………1
Chapter 2 Continuous Phase Modulation Schemes………………………………3
2.1 Introduction…………………………………………………………………3
2.2 Reviews of the CPM Schemes……………….……………………………4
2.3 CPFSK signaling Scheme…………………………………………………9
2.4 Decomposition Model for single-h CPM………………………………10
Chapter 3 Multi-h CPM Signals with Decomposition Model………………15
3.1 Introduction………………………………………………………………15
3.2 Derivation of Multi-h CPM with Decomposition Model……………15
3.3 Multi-h CPFSK Decomposition Model…………………………………20
3.4 Searching the Best Multi-h Phase Codes for CPFSK Scheme…………25
Chapter 4 Performance of the Trellis Coded Multi-h CPFSK…………………28
4.1 Introduction………………………………………………………………28
4.2 Ring Convolutional Encoded CPFSK Schemes…………………………30
4.3 Optimization via Matched Encoding Method……………………………31
4.4 Design Examples and Performance Evaluation…………………………33
4.4.1 Coded Binary Multi-h CPFSK………………………………………33
4.4.2 Coded Quaternary Multi-h CPFSK……………………………………37
4.4.3 Ring Convolutional Encoded Quaternary Multi-h CPFSK……………43
Chapter 5 Conclusions………………………………………………………………47
Appendix A……………………………………………………………………………48
References………………………………………………………………………………50
參考文獻 References
[1] J. B. Anderson, T. Aulin, and C.E. Sundberg, Digital Phase Modulation. New York: Plenum, 1986.
[2] J. B. Anderson and D. P. Taylor, “ A bandwidth-efficient class of signal- space codes,” IEEE Trans. Inform. Theory, vol. IT-24, pp. 703-712, Nov. 1978.
[3] B. Rimoldi, “ A decomposition approach to CPM,” IEEE Trans. Inform. Theory, vol. 34, pp. 260-270, Mar. 1988.
[4] J. B. Anderson and C.E. Sundberg, “ Advances in constant envelope coded modulation,” IEEE Commun. Mag. , pp. 36-45, Dec. 1991.
[5] I. Sasase and S. Mori, “ Multi-h phase-coded modulation,” IEEE Commun. Mag. , pp. 46-56, Dec. 1991.
[6] R. H.-H. Yang and D. P. Taylor, “ Trellis-coded continuous-phase frequency-shift keying with ring convolutional codes,” IEEE Trans. Inform. Theory, vol. 40, no. 4, pp. 1057-1067, July 1994.
[7] W. Holubowicz and F. Morales-Moreno, “ Convolutional coding of binary CPM schemes with no increases in receiver complexity,” IEEE Trans. Commun. , vol. 43, no. 2/3/4, pp. 1221-1224, Feb./Mar./Apr. ,1995.
[8] B. Rimoldi, “ Design of coded CPFSK modulation systems for bandwidth and energy efficiency,” IEEE Trans. Commun. , vol. 37, pp. 897-905, Sept. 1989.
[9] R. H.-H. Yang, F. Morales-Moreno, and D. P. Taylor, “ Efficient design of coded CPFSK,” Proc. IEEE GLOBECOM, 1990, pp. 907.3.1-907.3.5.
[10] F. Morales-Moreno, W. Holubowicz and S. Pasupathy, “ Optimization of trellis coded TFM via matched codes,” IEEE Trans. Commun. , vol. 42, no. 2/3/4, pp. 1586-1594, Feb./Mar./Apr. ,1994.
[11] J. P. Fonseka, “ Optimal multi-h phase codes for full response continuous phase signaling,” SBT/IEEE ITS’90 symposium record, 1990, pp. 22.1.1-22.1.5.
[12] J. P. Fonseka and R. Mao, “ Multi-h phase codes for continuous phase modulation,” Electr. Letters, vol. 28, no. 16, pp. 1495-1497, 1992.
[13] W. Holubowicz, “ Optimum parameter combinations for multi-h phase codes,” IEEE Trans. Commun. , vol. 38, pp. 1929-1931, Nov. 1990.
[14] J. P. Fonseka and G. R. Davis, “ Combined coded/multi-h CPFSK signaling,” IEEE Trans. Commun. , vol. 38, pp. 1708-1715, Oct. 1990.
[15] T. Ertas and F. S. F. Poon, “Trellis-coded multi-h CPM for power and bandwidth efficiency,” Electr. Letters, vol. 29, no. 2, pp. 229-230, 1993.
[16] G. Ungerboeck, “ Channel coding with multilevel/phase signals,” IEEE Trans. Inform. Theory, vol. IT-28, pp. 55-67, Jan. 1982.
[17] N. Ekanayake and R. Liyanapathirana, “ On the exact formula for the minimum squared Euclidean distance of CPFSK,” IEEE Trans. Commun. , vol. 42, pp. 2917-2918, Nov. 1994.
[18] B. Rimoldi, “ Exact formula for the minimum squared Euclidean distance of CPFSK,” IEEE Trans. Commun. , vol. 39, pp. 1280-1282, Sept. 1991.
[19] M. G. Mulligan and S. G. Wilson, “ An improved algorithm for evaluating trellis phase codes,” IEEE Trans. Inform. Theory, vol. IT-30, no. 6, pp. 864-851, Nov. 1984.
[20] K. R. Narayanan and G. L. Stuber, “ Performance of trellis coded CPM with iterative demodulation and decoding,” Proc. IEEE GLOBECOM, 1999, pp. 2346-2351.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code