Responsive image
博碩士論文 etd-0719101-103520 詳細資訊
Title page for etd-0719101-103520
論文名稱
Title
南沖繩海槽西端之鉛-210與釙-210:分佈型態及其活性不平衡現象
Pb-210 and Po-210 in the Western South Okinawa Trough:Distribution Pattern and Radioactive Disequilibrium
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-07-31
繳交日期
Date of Submission
2001-07-19
關鍵字
Keywords
鉛-210、釙-210、南沖繩海、顆粒清除作用、表觀顆粒通量、側向傳輸
Po-210, particulate scavenging process, mass fluxes, lateral transport, Wwstern South Okinawa, Pb-210
統計
Statistics
本論文已被瀏覽 5709 次,被下載 1659
The thesis/dissertation has been browsed 5709 times, has been downloaded 1659 times.
中文摘要
本研究利用在南沖繩海槽西端沈積物收集器所採集之半
年時序樣本,沈積物岩心以及水樣,供釙-210與鉛-210母
子核種的分析,藉由其分佈及其母子核種之不平衡現象來
探討此海域之顆粒特性。
錨碇測站T18(24°45'N 122°18'E)在半年間(1999年2月1999年8月)所得之表觀顆粒通量之時序變化,顯示高顆粒通量出現在2月至4月,其值界於16至56 g/m2/d之間。
鉛-210的活性時序變化呈遞增的趨勢,約由80增至100
dpm/g,且上層顆粒之鉛-210活性大都高於下層。與鉛-
210之趨勢相同,上下兩深度的釙-210活性皆隨時間遞
增,約由接近0增至27 dpm/g。測站T18之沈降顆粒與其附
近表層沈積物之鉛-210活性差異很大(前者平均約為
85~90 dpm/g,而後者只約為11 dpm/g),且粒徑與元素分
佈亦不相同,因此下方之沈積物並非直接由其上方之沈降
顆粒所提供。除T4岩心15公分以下及T19岩心外,其釙/鉛
比值變化極大,由0至0.7,釙-210均呈不足現象而其釙-
210與鉛-210活性都遠低於沈降顆粒之活度。T19岩心在表
層4公分內釙-210及鉛-210均由120 dpm/g降至60 dpm/g,
兩者大玫平衡,與其他測站岩心截然不同。
由測站T17、T18水體中釙/鉛活性比發現,T17測站的比
值約0.6,700公尺以下只有0.3,即釙-210活性呈明顯不
足,而T18測站的比值在水深100至300公尺間約為1.3,即
呈超量,而400公尺以下則約為0.6~0.7,再呈不足現象。
此等觀測顯示此二測站之水柱均有層化現象,可能係由側
向傳輸所形成。由釙/鉛比值得知,相對於顆粒清除作
用,釙-210在各水層之平均駐留時間介於3至16個月間。
Abstract
In this study, the settling particulates
collected by time-series sediment traps, sediment
cores, and seawater samples taken in the western
South Okinawa Trough were analyzed for 210Pb and
210Po in order to understand the characteristics
of the particulates and sediments based on the
distribution of these two nuclides and the extent
of their radioactive disequilibrium.
Two sediment traps were deployed at T18 (24°45'N 122°18'E, about 300m and 100m above bottom)
from February to August 1999. The results show
that higher mass fluxes were observed from
February to April, ranging between 16 and 56
g/m2/d. The 210Pb activity increases
systematically with time from about 80 to 100
dpm/g, and the upper trap has slightly higher
values. Similar to 210Pb, the 210Po activity
also increases, but from near zero to only 27
dpm/g for both traps, much lower than the
corresponding 210Pb activity.
The 210Pb activities are quite different
between the settling particulates collected by
traps at T18 and the surface sediment taken
nearby (the former have a mean activity of about
85 to 90 dpm/g; the latter has a value of only 11
dpm/g). The size distribution and elemental
composition are also different between the
trapped particulates and the sediment. Thus the
underlying sediments were not directly derived
from the overlying trapped particulates. Except
for T4 core below 15cm and T19 entire core, the
210Po/210Pb activity ratio in the sediments
varies greatly, from near zero to 0.7, indicating
deficiency of 210Po. Both 210Po and 210Pb
activities are much lower in the sediments than
in the settling particulates. A T19 both 210Po
and 210Pb activities in the core decrease steeply
from 120 dpm/g at surface to 60 dpm/g at 4 cm,
indicating radioactive equilibrium. This is
entirely different from the cores taken at other
stations.
The total 210Po/210Pb activity ratio in the
water column at T17 is nearly constant at about
0.6, but drops to 0.3 below 700m, i.e. 210Po
activity is deficient in the entire water
column. At T18, the activity ratio is about 1.3
between 100m and 300m, indicating a 210Po excess
in this layer. Below 400m, the ratio is about
0.6 to 0.7, showing 210Po deficit again. These
observations indicate that the water columns at
T17 and T18 are stratified, probably due to
lateral transport. Based on the 210Po/210Pb
activity ratio the mean residence time of 210Po
with respect to particulate scavenging ranges
from 3 to 16 months.
目次 Table of Contents
致謝……………………………………………………………Ⅰ
摘要……………………………………………………………Ⅱ
ABSTRACT………………………………………………………Ⅲ
目錄……………………………………………………………Ⅴ
圖目錄…………………………………………………………ⅥII
表目錄…………………………………………………………Ⅸ
一、緒論………………………………………………………1
1-1海洋中鉛- 210及釙- 210母子核種的來源……………1
1-2鉛- 210與釙- 210母子核種於海洋中的應用…………1
1-3研究目的、地形、水文背景及採樣區域………………3
  1-3.1研究目的…………………………………………3
1-3.2地形及水文背景………………………………………4
1-3.3採樣區域………………………………………………4
二、樣品處理…………………………………………………7
 2-1沈降顆粒的處理………………………………………7
2-2岩心的處理………………………………………………7
2-3水樣的處理………………………………………………8
2-4共沈澱……………………………………………………8
2-5燒失量(L.O.I.)…………………………………………8
2-6釙-210活性分析方法……………………………………9
2-7鉛-210活性分析方法……………………………………9
2-7.1以測釙-210活性的方法偵測鉛-210的活性…………11
2-7.2以測鉍-210活性的方法偵測鉛-210的活性…………11
三、活性修正方法……………………………………………13
 3-1釙-210與鉛-210活性修正方法………………………13
3-1.1表觀釙-210之計算……………………………………13
3-2鉛-210之不同分析方法的比較…………………………15
四、結果與討論………………………………………………17
4-1 測站T18之表觀顆粒通量………………………………17
4-2沈降顆粒之釙-210與鉛-210活性分佈…………………22
4-2.1 測站T18釙-210與鉛-210活性之時序變化…………22
4-2.2 釙-210和鉛-210之活性及其通量與顆粒通量及粒徑
的相關性………………………………………………22
4-2.3 釙-210及鉛-210之活性與燒失量(L.O.I.)的相關性24
4-2.4 鉛-210與釙-210的不平衡關係………………………31
4-3 岩心之釙-210與鉛-210活性分佈………………………32
4-3.1 有機質及含水率的變化………………………………32
4-3.2 釙-210之活性分佈……………………………………35
4-3.3 鉛-210活性分佈與沈積速率…………………………40
4-3.4 鉛-210與釙-210之活性不平衡關係…………………42
4-4 水樣中溶解態及顆粒態之釙-210與鉛-210活性分佈…47
4-4.1 溫度與鹽度剖面………………………………………47
4-4.2 懸浮顆粒濃度(TSM) …………………………………50
4-4.3 釙-210之活性分佈……………………………………50
4-4.4 鉛-210之活性分佈……………………………………57
4-4.5 水柱中鉛-210與釙-210的不平衡關係………………57
4-4.6 分佈係數 Kd 與 F……………………………………61
4-5 綜合討論…………………………………………………65
五、結論………………………………………………………67
參考文獻………………………………………………………69
 中文部分……………………………………………………69
英文部分……………………………………………………70
參考文獻 References
中文部份
1.王麗雯,1999,台灣東北海域沈降顆粒鈾釷同位素地化研究,國立中山大學海洋地質研究
所碩士論文,19- 20。
2.邱薰慧,2000,台灣周圍海域浮游生物釙-210和鉛-210含量及釙-210之富集現象,國立中
山大學海洋地質研究所碩士論文。
3.許世傑,1998,台灣東北外海沈積物來源與傳輸以及水體中微量金屬之地球化學,國立台
灣大學海洋研究所博士論文,60-64。
4.楊明權,1995,利用放射性核種Pb-210及Po-210研究台灣北部海域水體之清除現象,國立
台灣大學海洋研究所碩士論文,1-100。
5.劉維欣,2000,台灣東北海域沈降顆粒組成與粒徑分佈之研究,國立中山大學海洋地質研
究所碩士論文,46-50。
6.蔡雅婷,1999,鉛-210及鈾釷同位素在沈降顆粒中不同粒徑上之分佈及其意義,國立中山
大學海洋地質研究所碩士論文,1- 62。

英文部份
1.Bacon, M. P., D. W. Spencer and P. G. Brewer, 1976. Pb-210/Ra-226 and Po-
210/Pb-210 disequilibria in seawater and suspended particulate matter. Earth
and Planetary Science Letters, 32, 277-296.
2.Benninger, L. K. and S. Krishnaswami, 1981. Sedimentary processes in the
inner New York Bight:evidence from excess Pb-210 and Pu-239, Pu-240. Earth
and Planetary Science Letters, 53, 158-174.
3.Buesseler, K. O., H. D. Livingston and E. R. Sholkovitz, 1985. Pu-239, 240
and excess Pb-210 inventories along the shelf and slope of the northeast USA. 4.Earth and Planetary Science Letters, 76, 10-22.
5.Burton, W. M., N. G. Stewart, 1960. Use of long-lived natural radioactivity
as an atmospheric tracer. Nature, 186, 584-589.
6.Chen, M. P., S. C. Lo, and K. L. Lin, 1992. Composition and texture of
surface sediments indicating the depositional environments off northeast
Taiwan. Terres. Atmos. Ocean. Sci, 3, 395-418.
7.Chung, Y. and G. W. Hung, 2000, Particulate fluxes and transports on the
slope between the southern East China Sea and the South Okinawa Trough.
Continental Shelf Research, 20, 571-597.
8.Chung, Y. and H. Craig, 1983. Pb-210 in the Pacific: the GEOSECS measurements
of particulate and dissolved concentrations. Earth and Planetary Science
Letters, 65, 406-432.
9.Chung, Y., K. Chung, H. C. Chang, L. W. Wang, C. M. Yu, and G. W. Hung, 2001.
Variabilities of particulates flux and 210Pb in the southern East China Sea
and western South Okinawa Trough. (in press)
10.Chung, Y., and R. Finkel, 1988. 210Po in the western Indian Ocean:
distribution, disequilibria, and partitioning between the dissolved and
particulate phases. Earth and Planetary Science Letters, 88, 232-240.
11.Chung, Y. and W. C. Chang, 1996, Uranium and Thorium isotopes in marine
sediments off northeastern Taiwan, Mar. GEOL., 133, 89-102.
12.Flynn, W. W., 1968. The determination of low levels of Polonium-210 in
environmental materials. Analytical Chimica Acta., 43, 221-227.
13.Heussner, S. C. Ratti and J. Carbonne, 1990. The PPS-3 time-series sediment
trap and the trap sample processing techniques used during the ECOMARGE
experiment Continental Shelf Research, 10, 943-958.
14.Heyraud, M. and R. D. Cherry, 1983. Correlation of Po-210 and Pb-210
enrichments at the sea-surface microlayer with nruston biomass. Continental
Shelf Research, 1, 283-293.
15.Hung, T. C., 1975. Chemical investigation of upwelling along eastern coast
of Taiwan. Acta Oceanographica Taiwanica, 10, 77-94.
16.Koide, M. A. Soutar, and E.D. Goldberg, 1972. Marine geochronology with Pb-
210. Earth and Planetary Science Letters, 14, 442-446.
17.Krishnaswami, S., D. Lal, J. M. Martin and M. Maybeck, 1971, Geochronology
of lake sediments. Earth and Planetary Science Letters, 11, 407-414.
18.Li, Y. H., 1994. Material exchange between the East China Sea and the
Kuroshio current. Terres. Atmos. Ocean. Sci, 5, 625-631.
19.Nozaki, Y., 1990. Unusually large Po-210 dificiencies relative to Pb-210 in
the Kuroshio Current of the East China and Philippine Seas. Journal. Geophy.
Research , 95, 5321-5329.
20.Nozaki, Y., J. Thomson and K. K. Turekian, 1976. The distribution of Pb-210
and Po-210 in the surface waters of the Pacific Ocean. Earth and Planetary
Science Letters, 32, 304-312.
21.Radakovitch, O., R. D. Cherry and S. Heussner, 1999. Pb-210 and Po-210:
tracers of particle transfer on the Rhone continental margin (NW
Mediterranean). Deep Sea Research I, 46, 1539-1563.
22.Rama, M. K. and E. D. Goldberg, 1961. Lead-210 in natural water. Science,
134, 98-99.
23.Shannon, L. V., R. D. Cherry and M. J. Orren, 1970. Polonium-210 and lead-
210 in the marine environment. Geochimica et Cosmochimica Acta, 34, 701-711
24.Spencer, D. W., M. P. Bacon and P. G. Brewer, 1981. Models of the
distribution of Pb-210 in a section across the North Equatorial Atlantic
Ocean. Journal of Marine Research, 39, 119-138.
25.Tang, T. Y., J. H. Tai and Y. J. Yang, 2000. The flow pattern north of
Taiwan and the migration of the Kuroshio. Continental Shelf Research, 20,
349-371.
26.Tsai, S. W. and Y. Chung, 1989. Pb-210 in the sediments of Taiwan Strait.
Acta Oceanographica Taiwanica, 22, 1-13.
27.Yang, C. Y. and H. C. Lin, 1992. Lead-210 and polonium-210 across the
frontal region between the Kuroshio and China Sea, Northeast of Taiwan.
Terres. Atmos. Ocean.Sci., 3, 379-394.
28.Yang, H. S., Y. Nozaki, H. Sakai, Y. Nagaya and K. Nakamura, 1986. Natural
and man-mad radionuclide distributions in Northwest Pacific deep-sea
sediments:rate of sedimentation, bioturbation and Ra-226 migration.
Geochem. J., 20, 29-40.
29.Yu, H. S., E. Hong, 1993. The Huapinghsu Channel/Canyon System off
Northeastern Taiwan: Morphology, Sediment Character and Origin. Terres.
Atmos. Ocean.Sci., 4, 307-319.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code