Responsive image
博碩士論文 etd-0719101-204806 詳細資訊
Title page for etd-0719101-204806
論文名稱
Title
聚二醚酮結晶動力學與熔融行為以及穿晶對碳纖/聚二醚酮複材在長項張力-張力性質之影響
Crystallization Kinetics and Melting Behavior of PEEK and Influence of Transcrystallinity on the Long-Term Tensile-Tensile Property of AS4/PEEK Composites
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-07-10
繳交日期
Date of Submission
2001-07-19
關鍵字
Keywords
疲勞、結晶、碳纖/聚二醚酮複材、穿晶、熔融、聚二醚酮
fatigue, AS4/PEEK composites, PEEK, transcrystallinity, melting, crystallization
統計
Statistics
本論文已被瀏覽 5676 次,被下載 3017
The thesis/dissertation has been browsed 5676 times, has been downloaded 3017 times.
中文摘要
微差掃描卡儀(DSC)與模數微差掃描卡儀(MDSC)被用來研究聚二醚酮(PEEK)之結晶動力學和熔融行為。DSC研究等溫結晶在290和320ºC之間,並且以Avrami分析法得到Avrami exponents和level-off time。這n1值變化從1.50到2.98而n2值是在0.52和1.37之間。發生雙熔融峰所需最小時間是藉由增加一分鐘間隔之等溫時間獲得,這個最小時間總是比level-off time長;因此level-off time不能表示單一或雙熔融峰行為的界限。為了瞭解雙熔融峰之熔融行為與機制,試片在400ºC下熔融15分鐘,然後等溫結晶在200和320ºC之間10或60分鐘且個別以10或2ºC/min加熱到380ºC。從結晶溫度在290和310ºC間之MDSC結果,發現兩個不同型態和熔融再結晶之現象共存。當等溫結晶溫度增加從290到310ºC,熔融再結晶對高熔融峰的貢獻將逐漸變小。而結晶溫度在320ºC時,雙熔融峰是由兩個不同型態之機制所導致。
以修正後之隔膜成形機製造[0/±45/90]2s均向複合材料。三種不同加工條件被用來製作相同結晶度但不同穿晶度的AS4/PEEK複合材料,長項張力-張力測試前後之型態藉由掃瞄式電子顯微鏡來觀察。穿晶度對短項張力測試沒有重要影響,這是由於[0/±45/90]2s疊層的0º板纖維主導在短項張力測試的高應力破斷。但當穿晶度增加,則長項張力測試破壞週數變長。這指示在[0/±45/90]2s的90º和45º板破壞起始之延遲而導致較長破壞週
Abstract
Crystallization kinetics and melting behavior of PEEK were studied by differential scanning calriometry (DSC) and modulated differential scanning calriometry (MDSC). The isothermal crystallization was performed in DSC between 290 and 320°C. The Avrami constants (n1, n2) and the level off time were determined from the Avrami analysis. The n1 values varied from 1.50 to 2.98, and the n2 values were between 0.52 and 1.37. The minimum induction time required for the occurrence of double melting peaks was obtained by increasing the isothermal crystallization time in a interval per minute. It was found that the minimum time was always longer than the level off time, which cannot be used as the delimitation for the occurrence of single or double melting peaks. To study the melting behavior and the mechanisms of double melting peaks, the samples after melting at 400°C for 15 min were crystallized isothermally between 200 and 320°C for 10 or 60 min, and then they were heated to 380°C at 10 or 2 °C/min, respectively. From the MDSC results of crystallization temperatures between 280 and 310°C, it is found that two different morphologies and melting-recrystallization phenomenon coexisted. As the isothermal crystallization temperature increased from 280 to 310°C, the contribution of melting-recrystallization to the upper melting peak gradually decreased. In the case of 320°C, the mechanisms of double melting peaks were dominated by two different morphologies only.
Quasi-isotropic composites in the stacking sequence of [0/±45/90]2s were fabricated by a modified diaphragm forming apparatus. Three different processing conditions were used to prepare AS4/PEEK composites with the same crystallinity but different transcrystallinity. The morphology before and after the long-term tensile-tensile tests was observed by means of scanning electron microscope. The transcrystallinity has no significant effect on the short-term tensile test. This was due to the fibers in the 0° plies of [0/±45/90]2S laminates dominated the failure at high stress for the short-term tensile test. However, as the transcrystallinity increased, the failure cycles for the long-term tensile test became longer. This expressed that the delay of damage initiation in the 90° and ±45° plies of [0/±45/90]2s led to a longer failure cycles in the long-term tensile tests.
目次 Table of Contents
Table of Contents

Part Ⅰ Crystallization Kinetics and Melting Behavior of PEEK

List of Tables Ⅱ

List of Figures Ⅱ

Abstract Ⅶ

Chinese Abstract Ⅸ

Chapter 1. Introduction 1

Chapter 2. Experimental 6
2.1 Materials 6
2.2 Instruments 6
2.3 Samples Preparation 6
2.4 Differential Scanning Calorimetry (DSC) 7
2.5 Modulated Differential Scanning Calorimetry (MDSC) 7
2.6 Avrami Analysis 9
2.7 Experimental Flow Chart 10

Chapter 3. Results 13
3.1 Isothermal Crystallization Kinetics 13
3.2 Melting Behavior Studied by Conventional DSC 15
3.3 Melting Behavior Studied by Modulated DSC (MDSC) 16
3.4 Different Heating Rates 18

Chapter 4. Discussion 31

Chapter 5. Conclusion 39

Chapter 6. References 40
List of Tables

Table 1-1. Literature review of double melting peaks and the corresponding thermal history for different grades of PEEK. 4

Table 3-1. Analysis of isothermal crystallization kinetics of PEEK. 19

Table 3-2. The melting temperatures of total and reversible MDSC thermograms (and the absolute crystallinity) for PEEK specimens after melting at 400ºC for 15 min and then crystallizing isothermally at various temperatures for 60 min. 20


List of Figures

Figure 1-1. Chemical structure of PEEK. 1

Figure 2-1. A sinusoidal temperature oscillation is overlaid on the conventional linear temperature ramp 11

Figure 2-2. Experimental Flow Chart 12

Figure 3-1. Heat flow versus time for PEEK specimens after melting at 400ºC for 15 min and then crystallizing isothermally at 300, 310 and 320ºC, respectively. 21

Figure 3-2. Plot of log[-ln(1-Xc(t))] vs. log t for PEEK crystallized isothermally at 300ºC. 22

Figure 3-3. DSC thermograms at a heating rate of 10ºC/min for PEEK specimens after melting at 400ºC for 15 min and then crystallizing isothermally at (a) 290, (b) 300, (c) 310, and (d) 320ºC for various time. 23



Figure 3-4. DSC thermograms at a heating rate of 10ºC/min for PEEK specimens after melting at 400ºC for 15 min and then crystallizing isothermally at (a) 200~270ºC, and (b) 280~320ºC, for 10 min. 25

Figure 3-5. DSC thermograms at a heating rate of 2ºC/min for PEEK specimens after melting at 400ºC for 15 min and then crystallizing isothermally at (a) 200~270ºC, and (b) 290~320ºC for 60 min. 26

Figure 3-6. Variation of the melting temperature with the crystallization temperature at a heating rate of 10 or 2 ºC/min for PEEK specimens after melting at 400ºC for 15 min and then crystallizing isothermally for 10 or 60 min, respectively. 27

Figure 3-7. Modulated DSC thermograms at a heating rate of 2 ºC/min for PEEK specimens after melting at 400ºC for 15 min and then crystallizing isothermally at (a) 200 and 280ºC, (b) 290 and 300ºC, and (c) 310 and 320ºC, respectively, for 60 min.28

Figure 3-8. Three DSC heating thermograms for PEEK specimens after melting at 400ºC for 15 min and then crystallizing isothermally at 300ºC for 30 min. 30

Part Ⅱ Influence of Transcrystallinity on the Long-Term
Tensile-Tensile Property of AS4/PEEK Composites

List of Scheme Ⅴ

List of Tables Ⅴ

List of Figures Ⅴ

Abstract Ⅶ

Chinese Abstract Ⅸ

Chapter 7. Introduction 45

Chapter 8. Experimental 51
8.1 Materials 51
8.2 Instruments 51
8.3 Specimens Preparation 51
8.4 Short- and Long-Term Tests 53
8.5 Scanning Electron Microscope (SEM) 53
8.6 Crystallinity Measurement 54
8.7 Experimental Flow Chart 54

Chapter 9. Results and Discussion 59
9.1 Processing-Morphology Relationships 59
9.2 Morphology-Mechanical Properties Relationships 62
9.2.1 Short-Term Tensile Test 62
9.2.2 Long-Term Tensile Test 63
9.3 Fractography and Failure Mechanisms 63

Chapter 10. Conclusion 76

Chapter 11. References 77

List of Scheme

Scheme 8-1 Three process conditions of [0/±45/90]2S AS4/PEEK composites. 55


List of Tables

Table 9-1. Crystallinity and tensile properties of [0/±45/90]2S AS4/PEEK composites. 66


List of Figures

Figure 7-1. Melting temperature is at 415ºC for 15 min, and the cooling rate is 10ºC/min. (a) 300ºC and (b) room temperature. 49

Figure 7-2. Schematic representation of a fiber reinforced semicrystalline thermoplastic system. 50

Figure 8-1. Schematic of modified diaphragm forming apparatus. 56

Figure 8-2. Geometry and dimension of the test specimen (in mm). 57

Figure 8-3. Schematic plot of flow chart. 58

Figure 9-1. DSC melting traces of [0/±45/90]2S AS4/PEEK composites with different process conditions. The heating rate was 20°C/min. 67

Figure 9-2. SEM micrographs of specimens after plasma etching. (a) HF; (b) LF. 68

Figure 9-3. SEM micrograph of HS specimen after plasma etching. 69

Figure 9-4. The excess free energy of solid clusters for homogeneous and heterogeneous nucleation. 70



Figure 9-5. (a) Variation of ∆G* with undercooling (∆T) for homogeneous and heterogeneous nucleation. (b) The corresponding nucleation rates assuming the same critical value of ∆G*. 71

Figure 9-6. Influence of process conditions on the failure cycles of [0/±45/90]2S AS4/PEEK composites under tensile-tensile loading at three applied stresses. 72

Figure 9-7. SEM micrographs of 90° plies fracture surface for [0/±45/90]2S AS4/PEEK composites processed under: (a) HF; (c) LF; (e) HS conditions. (b) (d) (f): A close-up of the arrow in (a) (c) and (e), respectively 73

Figure 9-8. SEM micrographs of 45° plies fracture surface for [0/±45/90]2S AS4/PEEK composites processed under: (a) HF; (c) LF; (e) HS conditions. (b) (d) (f): A close-up of the arrow in (a) (c) and (e), respectively. 74

Figure 9-9. SEM micrographs of 0° plies fracture surface for [0/±45/90]2S AS4/PEEK
composites processed under: (a) HF; (c) LF; (e) HS conditions. (b) (d) (f): A close-up
of the arrow in (a) (c) and (e), respectively. 75
參考文獻 References
Part I
1. Attwood TE, Dawson PC, Freeman JL, Hoy LRJ, Rose JB, Staniland PA. Synthesis and properties of polyaryletherketones. Polymer 1981;22:1096-103.
2. Jonas A, Legras R. Thermal stability and crystallization of poly(aryl ether ether ketone). Polymer 1991;32:2691-706.
3. Jones DP, Leach DC, Moore DR. Mechanical properties of poly(ether-ether- ketone) for engineering applications. Polymer 1985;26:1385-93.
4. Chen JY, Chen M, Chao SC. Thermal stability and crystallization kinetics of poly(ether ether ketone). Macromol Chem Phys 1998;199:1623-29.
5. Velisaris CN, Seferis JC. Crystallization kinetics of polyetheretherketone (PEEK) matrices. Polym Eng Sci 1986;26:1574-81.
6. Day M, Deslandes Y, Roovers J, Suprunchuk T. Effect of molecular weight on the crystallization behaviour of poly(aryl ether ether ketone): a differential scanning calorimetry study. Polymer 1991;32:1258-66.
7. Day M, Suprunchuk T, Cooney JD, Wiles DM. Thermal degradation of poly (aryl-ether-ether-ketone) (PEEK): a differential scanning calorimetry study. J Appl Polym Sci 1988;36:1097-106.
8. Hay JN, Kemmish DJ. The crystallization of PEEK, a polyaryl ether ketone: molecular weight effects. Plast Rub Proc Appl 1989;11:29-35.
9. Bas C, Grillet AC, Thimon F, Alberola ND. Crystallization kinetics of poly(aryl ether ether ketone): time-temperature-transformation and continuous- cooling -transformation diagrams. Eur Polym J 1995;31:911-21.
10. Chen M, Chen JY. Analysis of crystallization kinetics of poly(ether ether ketone). J Polym Sci Part B: Polym Phys 1998;36:1335-48.
11. Chen M, Chung CT. Analysis of crystallization kinetics of poly(ether ether ketone) by a nonisothermal method. J Polym Sci Part B: Polym Phys 1998;36: 2393-99.
12. Chen M, Chung CT. Crystallinity of isothermally and nonisothermally crystallized poly(ether ether ketone) composites. Polym Compos 1998;19:689- 97.
13. Blundell DJ. On the interpretation of multiple melting peaks in poly(ether ether ketone). Polymer 1987;28:2248-51.
14. Lee Y, Porter RS. Double-melting behavior of poly(ether ether ketone). Macromolecules 1987;20:1336-41.
15. Lee Y, Porter RS, Lin JS. On the double-melting behavior of poly(ether ether ketone). Macromolecules 1989;22:1756-60.
16. Tan S, Su A, Luo J, Zhou E. Crystallization kinetics of poly(ether ether ketone) (PEEK) from its metastable melt. Polymer 1999;40:1223-31.
17. Lattimer MP, Hobbs JK, Hill MJ, Barham PJ. On the origin the multiple endotherms in PEEK. Polymer 1992;33:3971-3.
18. Lovinger AJ, Hudson SD, Davis DD. High-temperature crystallization and morphology of poly(aryl ether ether ketone). Macromolecules 1992;25:1752-8.
19. Hsiao BS, Gardner KCH, Wu DQ, Chu B. Time-resolved X-ray study of poly (aryl ether ether ketone) crystallization and melting behaviour: 2. melting. Polymer 1993;34:3996-4003.
20. Kruger KN, Zachmann HG. Investigation of the melting behavior of poly(aryl ether ketones) by simultaneous measurements of SAXS and WAXS employing synchrotron radiation. Macromolecules 1993;26:5202-8.
21. Wang J, Alvarez M, Zhang W, Wu Z, Li Y, Chu B. Synchrotron small angle X-ray scattering study of crystalline structures and isothermal crystallization kinetics of poly(aryl ether ether ketones). Macromolecules 1992;25:6943-51.
22. Marand H, Prasad A. On the observation of a new morphology in poly(arylene ether ether ketone). A further examination of the double endothermic behavior of poly(arylene ether ether ketone). Macromolecules 1992;25:1731-6.
23. Chen HL, Porter RS. Observation of two-stage crystallization of poly(ether ether ketone) by thermal mechanical analysis. Thermochim Acta 1994;243: 109-13.
24. Wang Y, Lu J, Shen D. Calorimetric and infrared spectroscopic analysis of multiple melting endotherms of poly(ethylene terephthalate). Polym J 2000; 32:560-6.
25. Wang ZG, Hsiao BS, Sauer BB, Kampert WG. The nature of secondary crystallization in poly(ethylene terephthalate). Polymer 1999;40:4615-27.
26. Wurm A, Merzlyakov M, Schick C. Reversible melting probed by temperature modulated dynamic mechanical and calorimetric measurements. Colloid Polym Sci 1998;276:289-96.
27. Wurm A, Merzlyakov M, Schick C. Crystallization of polymers studied by temperature-modulated techniques (TMDSC, TMDMA). J Macromol Sci Phys 1999;B38:693-708.
28. Pistor CM, Guceri SI. Crystallinity of on-line consolidated thermoplastic composites. J Compos Mater 1999;33:306-24.
29. Bas C, Battesti P, Alberola ND. Crystallization and melting behaviors of poly (aryletheretherketone) (PEEK) on origin of double melting peaks. J Appl Polym Sci 1994;53:1745-57.
30. Ko TY, Woo EM. Changes and distribution of lamellae in the spherulites of poly(ether ether ketone) upon stepwise crystallization. Polymer 1996;37:1167- 75.
31. Bassett DC, Olley RH, Al Raheil IAM. On crystallization phenomena in PEEK. Polymer 1988;29:1745-54.
32. Cheng SZD, Cao MY, Wunderlich B. Glass transition and melting behavior of poly(oxy-1,4-phenyleneoxy-1,4-phenylenecarbonyl-1,4-phenylene). Macromolecules 1986;19:1868-76.
33. Ostberg GMK, Seferis JC. Annealing effects on crystallinity of polyetherether- ketone (PEEK) and its carbon fiber composite. J Appl Polym Sci 1987; 33: 29- 39.
34. Jonas A, Legras R, Issi JP. Differential scanning calorimetry and infra-red crystallinity determinations of poly(aryl ether ether ketone). Polymer 1991;32: 3364-70.
35. TA Instruments. Manual of DSC 2910 differential scanning calorimeter. C-13.
36. Reading M, Luget A, Wilson R. Modulated differential scanning calorimetry. Thermochim Acta 1994;238:295-307.
37. TA Instruments. Manual of DSC 2910 differential scanning calorimeter. C-73.
38. Fougnies C, Damman P, Dosiere M, Koch MHJ. Time-resolved SAXS, WAXS, and DSC study of melting of poly(aryl ether ether ketone) (PEEK) annealed from the amorphous state. Macromolecules 1997;30:1392-99.
39. Blundell DJ, Osborn BN. The morphology of poly(aryl-ether-ether-ketone). Polymer 1983;24:953-8.
40. Deslandes Y, Day M, Sabir NF, Suprunchukt. Crystallization of poly(aryl-ether- ether-ketone): effect of thermal history of the melt on crystallization kinetics. Polym Compos 1989;10:360-6.
41. Hull D, Clyne TW. An introduction to composites materials. 1996;41.
42. Zhang Z, Zeng H. Effects of thermal treatment on poly(ether ether ketone). Polymer 1993;34:3648-52.
43. Sauer BB, Kampert WG, Neal Blanchard E, Threefoot SA, Hsiao BS. Temperature modulated DSC studies of melting and recrystallization in polymers exhibiting multiple endotherms. Polymer 2000;41:1099-108.
44. Hsiao BS, Gardner KCH, Wu DQ, Chu B. Time-resolved X-ray study of poly(aryl ether ether ketone) crystallization and melting behaviour: 1. crystallization. Polymer 1993;34:3986-95.

Part II
1. Jones DP, Leach DC, Moore DR. Mechanical properties of poly (ether-ether- ketone) for engineering applications. Polymer 1985;26:1385-93.
2. Ramey J, Palazotto A. A study of graphite/PEEK under high temperatures. ASTM STP 1044, G. M. Newaz, Ed., American Society for Testing and Materials, Philadelphia 1989;91-112.
3. Klein AJ. Composites that fight fatigue. Adv Mater Proc 1986;2:33-6.
4. Tai NH, Yip MC, Tseng CM. Influences of thermal cycling and low-energy impact on the fatigue behavior of carbon/PEEK laminates. Composites Part B 1999;30:849-65.
5. Hung YC. Crystallization kinetics for AS4/PEEK composites. Master Thesis, National Sun University, Kaohsiung, Taiwan. 1993;64.
6. Ishida H, Bussi P. Morphology control in polymer composites-Chapter 8, in structure and properties of composites, Chou TW, editor. Weinheim, New York 1992;368.
7. Attwood TE, Dawson PC, Freeman JL, Hoy LRJ, Rose JB, Staniland PA. Synthesis and properties of polyaryletherketones. Polymer 1981;22:1096-103.
8. Chen M, Chung CT. Crystallinity of isothermally and nonisothermally crystallized poly(ether ether ketone) composites. Polym Compos 1998;19:689-97.
9. Cebe P. Non-Isothermal crystallization of poly(etheretherketone) aromatic polymer composite. Polym Compos 1988;9:271-9.
10. Cartledge HCY, Baillie CA. Studies of microstructural and mechanical properties of nylon/glass Composite. Part I: The effect of thermal processing on crystallinity, transcrystallinity and crystal phases. J Mater Sci 1999;34:5099-111.
11. Avella M, Volpe GD, Martuscelli E, Raimo M. Transcrystallinity phenomena in a polypropylene/kevlar fiber System. I: Influence of crystallization conditions. Polym Eng Sci 1992;32:376-82.
12. Blundell DJ, Crick RA, Fife B, Peacock J, Keller A, Waddon A. Spherulitic morphology of the matrix of thermoplastic PEEK/carbon fibre aromatic polymer composites. J Mater Sci 1989;24:2057-64.
13. Schonhorn H. Heterogeneous nucleation of polymer melts on high-energy surfaces. II. Effect of substrate on morphology and wettability. Macromolecules 1968;1:145-51.
14. Fitchmun DR, Newman S. Surface crystallization of polypropylene. J Polym Sci Part A-2 1970;3:1545-64.
15. Kantz MR, Corneliussen RD. Thermoplastic fiber reinforced polypropylene composites having a transcrystalline morphology. Polym Lett Edit 1973;11:279-84.
16. Chatterjee AM, Price FP. Heterogeneous nucleation of crystallization of high plymers from the melt. I. Substrate-induced morphologies. J Polym Sci Polym Phys Edit 1975;13:2369-83.
17. Weinhold S, Litt MH, Lando JB. The effect of surface nucleation on the crystallization of the ? phase of poly(vinylidene fluoride). J Appl Phys 1980;51:5145-55.
18. Waddon AJ, Hill MJ, Keller A. On the crystal texture of linear polyaryls(PEEK, PEK and PPS). J Mater Sci 1987;22:1773-84.
19. Zeng H, Zhang Z, Peng W, Pu T. Transcrystalline structure of PEEK. Eur Polym J 1994;30:235-37.
20. Zhang M, Xu J, Zhang Z, Zeng H, Xiong X. Effect of transcrystallinity on tensile behaviour of discontinuous carbon fibre reiforced semicrystalline thermoplastic composites. Polymer 1996;37:5151-58.
21. Campbell D, Qayyum MM. Enhanced frcture strain of polypropylene by incorporation of thermoplastic fibres. J Mater Sci 1977;12:2427-34.
22. Avella M, Martuscelli E. Transcrystallinity phenomena in fiber-reinforced polypropylene. II: Morphology, thermal and mechanical properties relationships. Polym Eng Sci 1992;32:383-91.
23. Lee Y, Porter RS. Crystallization of poly(etheretherketone) (PEEK) in carbon fiber composites. Polym Eng Sci. 1986;26:633-39.
24. Chen EJH, Hsiao BS. The effect of transcrystalline interphase in advanced polymer composites. Polym Eng Sci 1992;280-6.
25. Cartledge HCY, Baillie CA. Studies of microstructural and mechanical properties of nylon/glass Composite. Part II: The effect of microstructures on mechanical and interfacial properties. J Mater Sci 1999;34:5113-26.
26. Denault J, Vu-Khanh T. Crystallization and fiber/matrix interaction during the molding of PEEK/carbon composites. Polym Compos 1992;13:361-71.
27. Sauer JA, Foden E, Morrow DR. Influence of molecular weight on fatigue behavior of polyethylene and polystyrene. Polym Eng Sci 1977;17:246-50.
28. Riddell MN, Koo GP, O'Toole JL. Fatigue mechanisms of thermoplastics. Polym Eng Sci 1966;363-68.
29. Konur O, Matthews FL. Effect of the properties of the constituents on the fatigue performance of composites:A review. Composites 1989;20:317-28.
30. Tai NH, Ma CCM, Wu SH. Fatigue behavior of carbon fiber/PEEK laminate composites. Composites 1995;26:551-59.

31. Tregub A, Harel H, Marom G. The influence of thermal history on the mechanical properties of poly(ether ether ketone) matrix composite materials. Compos Sci Technol 1993;48:185-90.
32. Tregub A, Harel H, Marom G. Thermal treatment effects on the crystallinity and the mechanical behaviour of carbon fiber-poly(ether ether ketone) composites. J Mater Sci Lett 1994;13:329-31.
33. Curtis DC, Moore DR, Slater B, Zahlan N. Fatigue testing of multi-angle laminates of CF/PEEK. Composites 1988;19:446-52.
34. Ma CCM, Lin SH, Tai NH, Wu SH, Wu JF. Fatigue behavior of quasi-isotropic carbon fiber/PEEK laminates under tension-tension loading. Polym Compos 1995;16:215-23.
35. Diao X, Ye L, Mai YW. Fatigue behavior of CF/PEEK composite laminates made from commingled prepreg PartII: Statistical simulations. Composites Part A 1997;28A:749-55.
36. Jen MH, Lee CH. Strength and life in thermoplastic composite laminates under static and fatigue loads. Part II: Formulation. Int J Fatigue 1998;20:617-29.
37. Chen M, Chung CT. Processing effects on the impact resistance of AS-4/PEEK composites. ICCE/2 1995;129-30.
38. Lustiger A, Uralil FS, Newaz GM. Processing and structual optimization of PEEK composites. Polym Compos 1990;11:65-75.
39. Lustiger A. Morphological aspects of the interface in the PEEK-carbon fiber system. Polym Compos 1992;13:408-12.
40. Blundell DJ, Osborn BN. The morphology of poly(aryl-ether-ether-ketone). Polymer 1983;24:953-8.
41. Porte DA, Easterling KE. Phase transformation in metals and alloys. Chapman & Hall, New York 1981;194.
42. Porte DA, Easterling KE. Phase transformation in metals and alloys. Chapman & Hall, New York 1981;195.
43. Zhang Z, Zeng H. Nucleation and crystal growth of PEEK on carbon fiber. J Appl Polym Sci 1993;48:1987-95.
44. Chen JY, Chen M, Chao SC. Thermal stability and crystallization kinetics of poly(ehter ether ketone). Macromol Chem Phys 1998;199:1623-29.
45. Chen M, Chen JY. Analysis of crystallization kinetics of poly(ether ether ketone). J Polym Sci Part B Polym Phys 1998;36:1335-48.
46. Kumar S, Anderson DP, Adams WW. Crystallization and morphology of poly(aryl-ether-ether-ketone). Polymer 1986;27:329-36.
47. Blundell DJ, Chalmers JM, Mackenzie MW, Gaskin WF. Crystalline morphology of the matrix of PEEK-carbon fiber aromatic polymer composites I. Assessment of crystallinity. SAMPE Quart 1985;16:22-30.
48. Tung CM, Dynes PJ. Morphological characterization of polyetheretherketone-carbon fiber composites. J Appl Polym Sci. 1987; 33:505-20.
49. Keith HD, Padden FJ. A phenomonological theory of spherulitic crystallization. J Appl Phys 1963;34:2409-21.
50. Jen MH, Lee CH. Strength and life in thermoplastic composite laminates under static and fatigue loads. Part I: Experimental. Int. J. Fatigue 1998;20:605-15.
51. Henaff-Gardin C, Lafarie-Frenot MC. Fatigue behavior of thermoset and thermoplastic cross-ply laminates. Composites 1992;23:109-16.
52. Diao X, Ye L, Mai YW. Fatigue behaviour of CF/PEEK composite laminates made from commingled prepreg Part I: Experimental studies. Composites Part A 1997;28A:739-47.


電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code