Responsive image
博碩士論文 etd-0719102-134944 詳細資訊
Title page for etd-0719102-134944
論文名稱
Title
強制脈衝流動配合多孔性熱沉於電子元件冷卻之探討
Numerical Study of Heat Transfer Enhancement with Porous Heat Sink in the Pulsating Channel Flow
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee

口試日期
Date of Exam
2002-07-12
繳交日期
Date of Submission
2002-07-19
關鍵字
Keywords
多孔行熱沉、脈衝流、散熱增強、達西數
Darcy number, Cooling enhancement, Pulsating flow, Porous heat sink
統計
Statistics
本論文已被瀏覽 5673 次,被下載 3005
The thesis/dissertation has been browsed 5673 times, has been downloaded 3005 times.
中文摘要
本文以數值方法探討在強迫脈衝流利用多孔質熱沉對平行板道內矩形發熱元件列之散熱熱傳增強特性。文以Darcy-Brinkman-Forchheimer流動模式,來模擬多孔性結構內部的流場狀態,而純流體區內之流動則採遵守Navier-Stoke方程式。結合界面條件以流線函數-渦度轉換式及使用控制體積法與混合法則求解上述流體/多孔質/固體複合層之藕合方程組。藉由各項參數變換,包括雷諾數Re、達西數Da、頻率參數St、振幅參數A和幾何參數(熱沉間隔Sp*),來探討流場之變化及其對熱傳增強的影響。數值運算結果,獲得在週期性穩定狀態後,廣範圍之瞬間流線場及等溫線場。其結果顯示,在脈衝流下由具多孔質熱沉之發熱元件所引起位於兩元件間之週期性縮小膨漲之循環渦流區的大小及強度主控著元件散熱冷卻的增強效益。而此種熱傳增強效果會隨著雷諾數、頻率參數、振幅參數增加而增加;但隨達西數增加而減小。至於熱沉間隔,在適當的範圍內可達增強對流熱傳的效果。此外,在與穩定非脈衝流且無多孔質熱沉元件比較,利用脈衝流配合多孔質熱沉應用,發熱元件有顯著的散熱增強,且元件瞬間運作之最大溫度均呈現降低趨勢。
Abstract
A numerical study was carried out for enhanced heat transfer from two heated blocks in a pulsating channel flow by porous heat sink. The flow over the fluid region is governed by the Navier-Stokes equation, and the flow through the porous medium is governed by the Darcy-Brinkman-Forchheimer equation. These two flows are coupled through the interface boundary conditions at the porous/fluid and porous/solid interfaces. After a stream function-vorticity transformation, solution of the coupled governing equations for fluid/porous/solid composite system is obtained using the control-volume-based procedure and hybrid scheme. Comprehensive time-dependent flow and temperature data obtained and averaged over a cycle of pulsation in a periodic steady state. In addition, this study details the effects of variation in the governing parameters, such as inertia parameter, Dracy number, Reynolds number, Strouhal number, pulsation amplitude and geometric parameters, to illustrate important fundamental and practical results. The results show that the periodic change of shape of interblock recirculation flow caused by porous-covering blocks has significant enhanced effect on flow pattern and heat transfer characteristics. This enhanced effect is found to increase with Reynolds number, Strouhal number and pulsation amplitude but decrease with Dracy number. In comparison with the non-porous heat sink case for a steady non-pulsating flow, significant increases in the average Nusselt number are predicted and the instantaneous maximum temperatures within the heated block array are reduced. Moreover, it is shown that specific choices in certain geometric parameters, such as interblock space, can make pronounded change in the cooling of heated block.
目次 Table of Contents
摘 要 I
目 次 III
圖目錄 V
表目錄 IX
第一章 緒論 1
1-1前言 1
1-2文獻回顧 2
1-3 研究目的 4
第二章 理論分析 5
2-1 基本假設 6
2-2 系統方程式及起始/邊界條件 7
2-2 統御方程式無因次化 11
2-4 紐賽數(Nusselt Number) 14
2-4.1 局部瞬間紐賽數(Time–local Nusselt number) 14
2-4.2 平均紐賽數(Average Nusselt number) 14
第三章 數值分析 15
3-1 ψ之差分方程式 16
3-2多孔性結構與流體界面 20
3-3 低鬆弛係數(Under-relaxation) 22
3-4 求解步驟 23
第四章 結果與討論 25
4-1 數值評估 25
4-1.1 網格獨立 29
4-1.2 數值驗證 (Validation) 32
4-2多孔性熱沉所引起之速度與溫度變化 35
4-3 達西數Da之影響 44
4-4 雷諾數Re之影響 53
4-5 頻率參數之影響 62
4-6 振幅參數之影響 71
4-7多孔質熱沉間隔變化之影響 79
第五章 綜合結論 88
參考文獻 89

圖目錄
圖2-1兩平行板內具多孔性熱沉之發熱元件的物理模型 5
圖3.1為二維座標之控制體積示意圖 15
圖3.2 數值運算流程圖 24
圖4.1 Re=500,DA=3×10-5,Λ=0.35,St=0.4,A=0.2之(a)橫向速度隨時間變化;(b)縱向速度隨時間變化 26
圖4.2 Re=500,DA=3×10-5,Λ=0.35,St=0.4,A=0.2之(a)橫向速度隨時間變化;(b)縱向速度隨時間變化 27
圖4.3 Re=500,DA=3×10-5,Λ=0.35,St=0.4,A=0.2之(a)橫向速度隨時間變化;(b)縱向速度隨時間變化 28
圖4.4 (a)計算區域之格點系統;(b)靠近熱源陣列區之局部放大之格點系統。 30
圖4.5 格點獨立 31
圖4.6 ( )本文與(---)Kim et al.【14】數值計算結果之比較:Da=10-4 (a) St=0.006 (b) St=0.32 33
圖4.7本文(1)與(2)Kim et al.【15】於非脈衝流(A=0), Re=500, Pr=0.7數值計算結果之比較:(a)流線場;(b)等溫線場 34
圖4.8 達西數Da=3×10-5時之流道內流線場隨時間之變化(Re=500;Λ=0.35;St=0.4;A=0.2) 40
圖4.9 達西數Da=3×10-5時之流道內速度場隨時間之變化(Re=500;Λ=0.35;St=0.4;A=0.2) 41
圖4.10 達西數Da=3×10-5時之流道內溫度場隨時間之變化(Re=500;Λ=0.35;St=0.4;A=0.2) 42
圖4.11 具多孔質熱沉之發熱元件列於二維平行流道強迫對流數值分析(a)流線場;(b)溫度場。 43
圖4.12 無多孔質熱沉之發熱元件列於二維平行流道強迫對流數值分析(a)流線場;(b)溫度場。 43
圖4.14 達西數Da=3×10-5時之流道內流線場隨時間之變化(Re=500;Λ=0.35;St=0.4;A=0.2) 46
圖4.15 達西數Da=3×10-5時之流道內溫度場隨時間之變化(Re=500;Λ=0.35;St=0.4;A=0.2) 47
圖4.16 達西數Da=9×10-5時之流道內流線場隨時間之變化(Re=500;Λ=0.35;St=0.4;A=0.2) 48
圖4.17 達西數Da=9×10-5時之流道內溫度場隨時間之變化(Re=500;Λ=0.35;St=0.4;A=0.2) 49
圖4.18 達西數Da=5×10-4時之流道內流線場隨時間之變化(Re=500;Λ=0.35;St=0.4;A=0.2) 50
圖4.19 達西數Da=5×10-4時之流道內溫度場隨時間之變化(Re=500;Λ=0.35;St=0.4;A=0.2) 51
圖4.20 不同達西數Da之流道內總平均紐賽數變化 52
圖4.21 雷諾數Re=500時之流道內流線場隨時間之變化(Da=3×10-5;Λ=0.35;St=0.4;A=0.2) 55
圖4.22 雷諾數Re=500時之流道內溫度場隨時間之變化(Da=3×10-5;Λ=0.35;St=0.4;A=0.2) 56
圖4.23 雷諾數Re=850時之流道內流線場隨時間之變化(Da=3×10-5;Λ=0.35;St=0.4;A=0.2) 57
圖4.24 雷諾數Re=850時之流道內流線場隨時間之變化(Da=3×10-5;Λ=0.35;St=0.4;A=0.2) 58
圖4.25 雷諾數Re=1500時之流道內流線場隨時間之變化(Da=3×10-5;Λ=0.35;St=0.4;A=0.2) 59
圖4.26 雷諾數Re=1500時之流道內流線場隨時間之變化(Da=3×10-5;Λ=0.35;St=0.4;A=0.2) 60
圖4.27 不同雷諾數Re之流道內總平均紐賽數變化 61
圖4.28 頻率參數St=0.4時之流道內流線場隨時間之變化(Da=3×10-5;Re=500;Λ=0.35;A=0.2) 64
圖4.29 頻率參數St=0.4時之流道內溫度場隨時間之變化(Da=3×10-5;Re=500;Λ=0.35;A=0.2) 65
圖4.30 頻率參數St=0.8時之流道內流線場隨時間之變化(Da=3×10-5;Re=500;Λ=0.35;A=0.2) 66
圖4.31 頻率參數St=0.8時之流道內溫度場隨時間之變化(Da=3×10-5;Re=500;Λ=0.35;A=0.2) 67
圖4.32 頻率參數St=1.6時之流道內流線場隨時間之變化(Da=3×10-5;Re=500;Λ=0.35;A=0.2) 68
圖4.33 頻率參數St=1.6時之流道內溫度場隨時間之變化(Da=3×10-5;Re=500;Λ=0.35;A=0.2) 69
圖4.34 不同頻率參數St之流道內總平均紐賽數變化 70
圖4.35 振幅參數A=0.2時之流道內速度場隨時間之變化(Da=3×10-5;Re=500;Λ=0.35;St=0.4) 72
圖4.36 振幅參數A=0.2時之流道內溫度場隨時間之變化(Da=3×10-5;Re=500;Λ=0.35;St=0.4) 73
圖4.37 振幅參數A=0.5時之流道內速度場隨時間之變化(Da=3×10-5;Re=500;Λ=0.35;St=0.4) 74
圖4.38 振幅參數A=0.5時之流道內溫度場隨時間之變化(Da=3×10-5;Re=500;Λ=0.35;St=0.4) 75
圖4.39 振幅參數A=0.7時之流道內速度場隨時間之變化(Da=3×10-5;Re=500;Λ=0.35;St=0.4) 76
圖4.40 振幅參數A=0.7時之流道內溫度場隨時間之變化(Da=3×10-5;Re=500;Λ=0.35;St=0.4) 77
圖4.41 不同振幅參數A之流道內總平均紐賽數變化 78
圖4.42 不同熱沉間隔Sp*=0.5時之流道內速度場隨時間之變化(Da=3×10-5;Re=500;Λ=0.35;St=0.4) 81
圖4.43 不同熱沉間隔Sp*=0.5時之流道內溫度場隨時間之變化(Da=3×10-5;Re=500;Λ=0.35;St=0.4) 82
圖4.44 不同熱沉間隔Sp*=1.0時之流道內速度場隨時間之變化(Da=3×10-5;Re=500;Λ=0.35;St=0.4) 83
圖4.45 不同熱沉間隔Sp*=1.0時之流道內溫度場隨時間之變化(Da=3×10-5;Re=500;Λ=0.35;St=0.4) 84
圖4.46 不同熱沉間隔Sp*=1.5時之流道內速度場隨時間之變化(Da=3×10-5;Re=500;Λ=0.35;St=0.4) 85
圖4.47 不同熱沉間隔Sp*=1.5時之流道內溫度場隨時間之變化(Da=3×10-5;Re=500;Λ=0.35;St=0.4) 86
圖4.48 不同熱沉間隔Sp*之流道內總平均紐賽數變化 87







表目錄
表4.1不同網格系統下總平均紐賽數列表 31
表4.2各參數的主要變化範圍 35

參考文獻 References
1. Kraus, A. D. and Bar-Cohen, A., Thermal Analysis and Control of Electronic Equipment. Hemisphere, New York, 1983.
2. Sparrow, E. M. , Yanezmoreno, A. A. and Otis, D. R. Jr., “Convection Heat Transfer Response to Height Differences in an Array of Block-Lone Electronic Components,” Int.J.Heat Mass Transfer, Vol.27(1984),pp. 469-473.
3. Incropera, F. P. , Kerby, J. S. , Moffatt D. F. and Ramadhyani, S., “ Convection Heat Transfer from Discrete Heat Sources in a Rectangular Channel,” Int.J.Heat Mass Transfer, Vol.29(1986),pp. 1051-1058.
4. Davalath, J. and Bayazitoglu, Y., “Forced Convection cooling across rectangular blocks,” J. Heat Transfer, Vol.109(1987), pp. 321-328.
5. Kang , B.H. , Jaluria , Y. and Tewari , S.S. , “Mixed convection transport from an isolated heat source module on a horizontal plate,” Transactions of the ASME Journal of Heat Transfer , 1990 , 112 , 653-661.
6. Kim , S. Y. , Sung , H. J. and Hyun , J. M. , “Mixed convection from multiple-layered boards with cross-streamwise periodic boundary conditions,” International Journal of Heat Mass Transfer. 1992, 35, 2941-2952.
7. R. Siegel and M. Perlmutter, “Heat transfer for pulsating laminar duct flow, Transactions of the ASME Journal of Heat Transfer ,” 1962, 84 , 111-123.
8. U . H. Kurzweg, “Enhanced heat conduction in oscillating viscous flows within parallel-plane channels,” J. Fluid Mech.1985, 156, 291-300.
9. Kim S. Y. ,Kang B. H. and HYUN J. M. ,”Heat transfer in the thermally developing region of a pulsating channel flow,” Int. J. Heat Mass Transfer, Vol. 36. 4257-4266, 1993.
10. Kaviang, M., ”Laminar Flow through a Porous Channel Bounded by Isothermal Parallel Plates” Int.J.Heat and Mass Transfer, Vol.28, pp.851-858,1985.
11. Poulikakos, D., and Renhen, K., ”Forced Convection in a Channel Filled with Porous Medium, Including the Brinkman Friction, ”.J. Heat Transfer,ASME, Vol.109, pp.880-888,1987.
12. Channabasappa, K. G. Umapathy and Nayak, I. V., ”Convection Heat Transfer in a Parallel Plate Channel with Porous Lining, ” Warme-und Stoffubertragung., 17,pp.211-226,1983.
13. Huang, P. C. and Vafai, K., “Analysis of Forced Convection Enhancement in a Parallel Plate using Porous Blocks,” AIAA J. Thermophysics and Heat Transfer, Vol.18(1994), pp. 563-573.
14. Hadim, H. A.and Bethancourt, A., “Numerical Study of Forced Convection in a Partially Porous Channel with Discrete Heat Sources,” J.Electronic package, Vol.117(1995), pp. 46-51.
15. Kim S. Y. ,Kang B. H. and HYUN J. M. ,”Heat transfer from pulsating flow in channel filled with porous media,” Int. J. Heat Mass Transfer, Vol. 37. 2025-2033, 1994.
16. Kim S. Y. ,Kang B. H. , “Forced convection heat transfer from two heated blocks in pulsating channel flow,” Int. J. Heat Mass Transfer, Vol. 41, 625-634, 1998.
17. Ghaddar, N. K., Magen, M., Mikic, B. B. and Patera, A. T., Numerical investigation of incompressible flow in grooved channels. Part 1. Stability and self-sustained oscillations. Journal of Fluid Mechanics, 1986, 163, 99-127.
18. Ghaddar, N. K., Magen, M., Mikic, B. B. and Patera, A. T., Numerical investigation of incompressible flow in grooved channels. Part 2. Oscillatory heat transfer enhancement. Journal of Fluid Mechanics, 1986, 168, 541-567.
19. Patanker, S. W., Numerical Heat Transfer and Fluid Flow , Chap.5-6, ,McGraw-Hill,New York(1980),pp. 79-138.
20. Lundgren, T. S., “Slow Flow Through Stationary Random Beds and Suspensions of Spheres,” J.Fluid Mech, Vol.51(1972),pp. 273-299.
21. Huang, P. C. and Vafai, K., “Analysis of Forced Convection Enhancement in a Parallel Plate using Porous Blocks,” AIAA J. Thermophysics and Heat Transfer, Vol.18(1994),pp. 563-573.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code