Responsive image
博碩士論文 etd-0719103-171352 詳細資訊
Title page for etd-0719103-171352
論文名稱
Title
摻鉻釔鋁石榴石晶體光纖雷射之研製
The Study and Fabrication of Cr4+:YAG Crystal Fiber Laser
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
131
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-26
繳交日期
Date of Submission
2003-07-19
關鍵字
Keywords
固態雷射、晶體光纖雷射、摻鉻釔鋁石榴石
crystal fiber laser, chromium doped yttrium aluminum garnet, solid state laser
統計
Statistics
本論文已被瀏覽 5672 次,被下載 2832
The thesis/dissertation has been browsed 5672 times, has been downloaded 2832 times.
中文摘要
中文摘要

近年來由於光通訊需求的快速成長,因而帶動了通訊用1.3 mm~1.6 mm波長雷射光源的發展,摻鉻釔鋁石榴石(Cr4+:YAG)固態雷射將相當有潛力滿足此超寬頻之需求,且固態雷射具有高品質輸出模態、壽命長、結構簡單、體積小諸優點,因此其潛力將不容忽視。

本論文採用小尺寸之晶體光纖做為雷射增益介質,在晶體的兩端鍍上光學薄膜做成共振腔,可大幅縮小固態雷射之體積,降低成本,簡化固態雷射架構,同時提高散熱效率。實驗採雷射加熱基座生長法生長晶體光纖,此法不僅可輕易生長出直徑極小之單晶,且生長速度快、耗能低、控制容易,既經濟又快速,且無坩鍋污染問題。利用此方法我們已能生長出直徑最小50 mm之Cr4+:YAG晶體光纖,藉由玻璃包覆技術可將晶體光纖纖心直徑縮小至11 mm,形成波導結構,並能夠於玻璃包覆外層加上銅鋁合金包覆來提高散熱效率,將此元件加以研磨、拋光、鍍膜即可製成Cr4+:YAG晶體光纖雷射。論文中也同時對晶體光纖中之Cr2O3與CaO摻雜濃度分佈、螢光與折射率分佈、以及傳輸損耗與吸收係數做了量測與分析,同時,本論文也針對所研製之晶體光纖雷射進行模擬,了解Cr4+:YAG晶體光纖雷射輸出與吸收係數、傳輸損耗、輸出耦合率、晶體光纖直徑、晶體邊界溫度間之關係。







Abstract
Abstract

During the last decade, the fast-growing communication need has promoted the development of the wavelength of 1.3 mm~1.6 mm laser light source. The Cr4+ doped YAG solid-state laser has potential to meet this super wideband demand. In addition, solid state laser has the merits of high laser beam quality, long lifetime, compact, and simple structure.

In this thesis, crystal fiber was used as the laser gain medium, and coated with optical thin film at its end facets as the laser cavity. Using this configuration, the volume and cost of the laser can be appreciatively reduced, and the heat dissipation can be improved.

The laser-heated-pedestal-growth method was used to grow crystal fiber, which can obtain small diameter at very fast rate and accurate control. High quality Cr4+:YAG crystal fiber with the smallest diameter of 50 mm was grown. A glass-packaged technique clothes the crystal fiber with a core diameter as small as 11 mm. Outside the glass clad Cr4+:YAG crystal fiber, Al-Cu alloy was employed as the heat sink to improve heat dissipation. After grinding, polishing, and coating of this device, the Cr4+:YAG crystal fiber laser was fabricated. Some characteristics of Cr4+:YAG crystal fiber, such as the distribution of Cr2O3 and CaO doping concentration, fluorescence intensity, refraction index, propagation loss, and absorption coefficient were measured and analyzed. In the meanwhile, some simulations of the laser output power depending on the absorption coefficient, propagation loss, output coupling, crystal fiber diameter, and crystal boundary temperature were discussed.





目次 Table of Contents

目錄
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 iv
表目錄 vii
第一章 緒論 1
第二章 Cr4+:YAG晶體光纖雷射原理 5
2.1 晶體特性 5
2.2 電荷補償 15
2.3 能階模型 19
2.4 傳輸模態 23
2.5 腔內損耗 27
第三章 晶體生長與元件製作 32
3.1 生長方法與架構 32
3.2 晶體光纖之包覆 38
3.3 元件之研磨與拋光 50
第四章 Cr4+:YAG晶體光纖特性量測 59
4.1 摻雜離子濃度量測 59
4.2 折射率與螢光量測 65
4.3 傳輸損耗與吸收係數量測 71
第五章 雷射與數值分析 76
5.1 雷射共振腔 76
5.2 光學鍍膜 78
5.3 雷射架構與結果分析 81
5.4 雷射理論模擬 90
第六章 結論 102
參考文獻 105
中英對照表 110
附錄:Cr4+:YAG模擬程式 114

參考文獻 References
參考文獻
[1] M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser-heated-miniature pedestal growth apparatus for single-crystal fibers,” Opt. Lett., Vol. 11, No. 7, pp. 437-439, 1986.
[2] D. B. Gasson and B. Cockayne, “Oxide crystal growth using gas lasers,” J. of Materials Sci., Vol. 5, pp. 100-104, 1970.
[3] J. Stone and C. A. Burrus, “Self-contained LED-pumped single crystal Nd:YAG fiber laser,” Fiber Integrated Opt., Vol. 2, No. 1, pp. 19-46, 1979.
[4] N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35-1.45mm,” Sov. J. Quant. Electron., Vol. 18(1), pp.73-74, 1988.
[5] P. M. W. French, N. H. Rizvi, and J. R. Taylor, “Continuous-wave mode-locked Cr4+:YAG laser,” Opt. Lett., Vol. 18, No. 1, pp. 39-41, 1993.
[6] A. Sennaroglu and C. R. Pollock, “Continuous-wave self-mode-locked operation of a femtosecond Cr4+:YAG laser,” Opt. Lett., Vol. 19, No. 6, pp. 390-392, 1994.
[7] A. Sennaroglu and C. R. Pollock, “Efficient continuous-wave chromium-doped YAG laser,” J. Opt, Soc. Am. B, Vol. 12, No. 5, pp. 930-937, 1995.
[8] S. Ishibashi, K. Naganuma, and I. Yokohama, “Cr, Ca:Y3Al5O12 laser crystal grown by the laser heated pedestal growth method,” J. Cryst. Growth, Vol. 183, pp. 614-621, 1998.
[9] I. T. Sorokina, S. Naumov, E. Sorokin, and E. Wintnter, “Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser,” Opt. Lett., Vol. 24, No. 22, pp. 1578-1580, 1999.
[10] D. J. Ripin, C. Chudobs, J. T. Gopinath, J. G. Fujimoto, and E. P. Ippen, “Generation of 20-fs pulses by a prismless Cr4+:YAG laser,” Opt. Lett., Vol. 27, No. 1, pp. 61-63, 2002.
[11] S. Ishibashi and K. Naganuma, “Diode pumped Cr4+:YAG single crystal fiber laser,” in Advanced Solid-State Lasers, OSA Tech. Dig., Davos, Switzerland, p.103, 2000.
[12] H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG Laser,” IEEE J. Quant. Electron., Vol. 29, No. 9, pp. 2508-2512, 1993.
[13] S. A. Markgraf, M. F. Pangborn, and R. Dieckmann, “Influence of different divalent co-dopants on the Cr4+ content of Cr-doped Y3Al5O12,” J. Cryst. Growth, Vol. 180, pp. 81-84, 1997.
[14] B. M. Tissue, W. Jia, Lizhu Lu, and William M. Yen, “Coloration of chromium-doped yttrium aluminum garnet single-crystal fiber using a divalent codopant,” J. Appl. Phys., Vol. 70 (7), pp. 3775-3777, 1991.
[15] A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” J. Opt. Soc. Am. B, Vol. 18, pp. 1578-1586, 2001.
[16] G. M. Zverev and A. V. Shestakov, “Tunable near-infrared oxide crystal lasers,” in Tunable Solid State Laser, Vol. 5 of OSA Proceedings Series, M. Shnad and H.P. Jenssen, eds. (Optica Society of America, Washington, D. C., 1989), pp. 66-70.
[17] N. I. Borodin, A. G. Okhrimchuk, and A. V. Shestakov, “Polarizing spectroscopy of Y3Al5O12, SrAl2O4, and CaAl2O4 crystals containing Cr4+,” in Advanced Solid State Lasers, G. Dube and L, Chase, eds, Vol. 13 OSA Proceeding Series (Optical Society of America, Washington, D. C., 1992), pp. 42-46.
[18] V. Petricevic, S. K Gayen, R. R. Alfano, K. Yamagishi, H. AnZai, and Y. Yamaguchi,” Laser action in chromium-doped forsterite, “ Appl. Phys. Lett., Vol. 52, pp. 1040-1042 , 1988.
[19] V. Petricevic, S. K. Gayen, and R. R. Alfano, “Laser action in chromium- activated forsterite for near-infrared excitation : Is Cr4+ the lasing ion?,” Appl. Phys. Lett., Vol. 53, pp. 2590-2592, 1988.
[20] H. R. Verdun, L. M. Thomas, D. M. Andrausks, T. McCollum, and A. Pinto, “Chromium-doped forsterite laser pumped with 1.06 µm radiation,” Appl. Phys. Lett., Vol. 53, pp. 2593-2595 , 1988.
[21] H. Eilers, U. Hömmerich, S. M. Jacobsen, and W. M. Yen, “Spectrocopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B, Vol. 49, No. 22, pp.15 505-15 513, 1994.
[22] A. Sugimoto, Y. Nobe, and K. Yamagishi, “Crystal growth and optical characterization of Cr, Ca:Y3Al5O12,” J. Cryst. Growth, Vol. 140, pp. 349-354, 1994.
[23] http://www.webelements.com/
[24] Y. Chang, “Ultrafast optical pulse generation from Cr4+-doped yttrium aluminum garnet tunable solid-state laser,” Ph.D. dissertation, National Library of Canada, 1999.
[25] C. J. Ballhausen, Introduction to Ligand Field Theory, McGraw-Hill, New York, 1962.
[26] S. Kück, J. Koetke, K. Petermann, U. Pohlmann, and G. Huber, “Spectroscopic and laser studies of Cr4+:YAG and Cr:Y2SiO5,” OSA Proceedings on Advanced Solid-State Lasers, Vol. 15, pp. 334-338, 1993.
[27] A. Sennaroglu and B. Pekerten, “Experimental and numerical investigation of thermal effects in end-pumped Cr4+:forsterite laser near room temperature,” IEEE J. Quant. Electron., Vol. 34, No. 10, pp. 1996-2005, 1998.
[28] A. Sennaroglu, “Optimization of power performance in room-temperature continuous-wave Cr4+:YAG laser,” Opt. Commun., Vol. 192, pp. 83-89, 2001.
[29] G. P. Agrawal, Fiber-Optic Communication Systems, 2nd Edition, Wiley, 1997.
[30] M. M. Fejer, “Crystal fibers: Growth dynamics and nonlinear optical interactions,“ Ph.D. dissertation, Stanford University, Standford, CA, 1986.
[31] M. J. F. Digonnet, C. J. Gaeta, D. O’Meara, and H. J. Shaw, “Clad Nd:YAG fiber for laser applications,” J. Lightwave Technol., Vol LT-5, No. 5, pp. 642-646, 1987.
[32] 余樹楨,“晶體之結構與性質”,渤海堂,2000年。
[33] C. A. Burrus and J. Stone, “Single-crystal fiber optical devices: A Nd:YAG fiber laser,” Appl. Phys. Lett., Vol. 26, p. 318, 1975.
[34] G. A. Magel, M. M. Fejer, and R. L. Byer, ”Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett., Vol. 56, pp. 108-110, 1990.
[35] L. Hesseling and S. Redfield, “Photorefractive holographic recording in strontium barium niobate fiber,” Opt. Lett, Vol.13, pp. 877-879, 1988.
[36] R. S. Feigelson, D. Gazit, and D. K. Fork, ”Superconducting Bi-Ca-Sr-Cu-O fibers grown by the laser-heated pedestal growth method,” Science, Vol. 240, pp. 1642-1645, 1988.
[37] 張金倉,霍玉晶,何豫生,”激光加熱浮區生長強織構高溫超導晶纖的研究”,中國激光,第20卷,第8期,1933年。
[38] R. S. Feigelson, W. L. Kway and R. K. Route, “Single crystal fbers by the laser-heated pedestal growth method,” Opt. Eng., Vol. 24, No. 6, pp. 1102-1107, 1985.
[39] C. Goutaoudier, F. S. Ermeneux, M. T. Cohen-Adad, R. Moncorge, M. Bettinelli, and E. Cavalli, “LHPG and flux growth of various Nd:YVO4 single crystals: A comparative characterization,” Mater. Res. Bull., Vol. 33, No. pp. 1457-1465, 1998.
[40] Mark W. Zemansky and R. H. Dittman, Heat and thermodynamics, 7th, McGRAW-Hill, p.93, 1997.
[41] Taylor Lyman, “Metallography, structures and phase diagrams,” American society for metals, Vol. 8, 8th Edition, 1973.
[42] L. E. Samuels, Metallographic Polishing by Mechanical Method, 3rd Edition, ASM, 1982.
[43] C. W. Wang, Y. L. Weng, P. L. Huang, H. Z. Cheng, and S. L. Huang, “Passively Q-switched quasi-three-level laser and its intracavity frequency doubling,” Appl. Opt., Vol. 41, No. 6, pp. 1075-1081, 2002.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code