Responsive image
博碩士論文 etd-0719105-084900 詳細資訊
Title page for etd-0719105-084900
論文名稱
Title
添加硼對高功能鎂銅釔合金非晶質化及奈米結晶行為之影響
Amorphization and Nanocrystallization Behavior in Mg-Cu-Y Alloy by Adding Boron
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-06
繳交日期
Date of Submission
2005-07-19
關鍵字
Keywords
活化能、結晶動力學、非晶質化、鎂基非晶質合金
crystallization kinetics, activation energy, Mg-based amorphous alloy
統計
Statistics
本論文已被瀏覽 5651 次,被下載 1314
The thesis/dissertation has been browsed 5651 times, has been downloaded 1314 times.
中文摘要
近幾十年來,多元非晶質合金由於具有一些獨特的物理特性及化學特性,已引起眾多學者的研究與探討。而在這些多元非晶質系統中,鎂基非晶質合金因具有高強度重量比,低玻璃轉換溫度及輕密度等特性。因此在輕金屬應用中,佔有相當大的發展潛力及優勢。

本研究以在鎂基非晶質合金之中,具有高玻璃形成能力的Mg65Cu25Y10非晶質為母材,藉由添加小原子尺寸的硼探討對母材熱性質、非晶質化及奈米結晶行為的影響。在實驗流程上,首先利用小型電弧爐及高週波爐熔鍊得到厚度約100~200
Abstract
The glass forming ability (GFA) of the lightweight Mg65Cu25Y10 alloy has been widely studied. This alloy contains a medium sized Mg matrix (0.16 nm in atomic radius), a small sized Cu (0.14 nm) and a large sized Y (0.18 nm). The glass transition temperature Tg, supercooled temperature range
目次 Table of Contents
Content..................................................................................................................................... i
Tables List................................................................................................................................ iii
Figures List.............................................................................................................................. iv
Abstract ..................................................................................................................................... 1
1 Introduction and literature review..................................................................................... 4
1.1 Introduction……...................................................................................................... 4
1.2 The development of Mg-based amorphous alloys.................................................... 4
1.3 Influence of quaternary additions on Mg-based alloys............................................ 5
1.4 The purpose of this study......................................................................................... 6
2 Background....................................................................................................................... 7
2.1 The evolution of amorphous alloys.......................................................................... 7
2.2 The systems of glassy metals................................................................................... 8
2.3 The dominant factors for the glass forming ability.................................................. 9
2.4 The main empirical rules for the synthesization of amorphous alloys......….….... 10
2.4.1 Bonding parameter for Mg-based BMGs………………………………......... 13
2.5 Characterization of amorphous alloys………….......................... ................................... 14
2.5.1 Mechanical properties........................ ............................................................. 15
2.5.2 Magnetic properties……………………. ........................................................ 15
2.5.3 Chemical properties.......................................................................................... 15
2.5.4 Other properties and behavior of bulk amorphous alloys................................ 15
2.6 Crystallization transformation of amorphous…………………………………………... 16
2.6.1 The Kissinger plot............................................................................................ 16
2.6.2 Modified kinetics of non-isothermal crystallization kinetics…....................... 17
2.6.3 Isothermal analysis for the crystallization kinetics of amorphous alloys… ..20
2.6.4 The Arrhenius plot........................................................................................ 21
3 Experimental procedures............................................................................ .................... 22
3.1 Materials................................................................................................................. 22
3.2 Synthesization methods.......................................................................................... 22
3.2.1 Arc melting.................................................................................................... 22
3.2.2 Melt spinning................................................................................................. 23
3.3 Phase identification by XRD.................................................................................. 24
3.4 SEM/EPMA observations……………………………........................................ ..24
3.5 Microhardness testing…………………………………………............................ 24
3.6 Density measurement.............................................................................................. 25
3.7 DSC thermal stability analysis..... ......................................................................... 25
3.8 Microstructure characterizations............................................................................ 26
4. Experimental Results....................................................................................................... 27
4.1 Specimens prepartion............................................................................................. 27
4.2 X-ray diffraction analyses...................................................................................... 27
4.3 SEM/EPMA observations...................................................................................... 28
4.4 Microhardness tests………………………………......... ...................................... 29
4.5 Density measurements........................................... …......... .................................. 29
4.6 Thermal analyses............................................... ......... .......................................... 30
4.6.1 Non-isothermal analyses and kinetics............ ................................ ..............30
4.6.2 Kissinger plots for non-isothermal analyses................................... ...............32
4.6.3 Modified Kissinger plots for non-isothermal analyses......................... .. ......32
4.6.4 Isothermal analyses and kinetics.......... …………………………………… 34
4.7 TEM observations………………………………………………………………. 36
5. Discussions…………………………………………………………………………….. 37
5.1 The effect of the boron element…………………………………………………. 37
5.2 XRD analyses……………………………………………………………………. 38
5.3 Thermodynamics and kinetics analyses…………………………………………. 39
6. Conclusions……………………………………………………………………………. 42
References................................................................................................................................. 44
Tables........................................................................................................................................ 47
Figures....................................................................................................................................... 56
參考文獻 References
[1] 吳學陞, 工業材料, 149 (1999), pp. 154-165.
[2] A. Inoue, K. Ohtera, K. Kita and T. Masumoto, Jpn. J. Appl. Phys., 27 (1988) L.2248.
[3] A. Calka, M. Madhava, D. E. Polk, B. C. Giessen and J. V. Sande, Scripta. Metall., 11 (1970), p. 65.
[4] F. Sommer, G. Bucher and B. Fredel, J. Phys. C, 41 (1980), p. 563.
[5] A. Inoue and T. Masumoto, Mater. Sci. Eng. A, 133 (1991), p. 6.
[6] A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, Mater. Trans. JIM, 32 (1991), pp. 609-616.
[7] A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, Mater. Trans. JIM, 33 (1992), pp. 937-945.
[8] A. Inoue, T. Zhang and T. Masumoto, J. Non-Cryst. Solids, 156-158 (1993), p. 473.
[9] A. Inoue, Acta Mater., 48 (2000), pp. 279-306.
[10] A. Inoue, T. Zhang, M. W. Chen and T. Sakurai, J. Mater. Res., 15 (2000), p. 2195.
[11] E. S. Park, H. G. Kang, W. T. Kim and D.H. Kim., J. Non-Cryst. Solids, 279 (2001), p. 154.
[12] H. Men, W. T. Kim and D. H. Kim., J. Non-Cryst. Solids, 337 (2004), p. 29.
[13] H. Men, Z. Q. Hu and J. Xu, Scripta Mater., 46 (2002), pp. 699-703.
[14] K. Amiya and A. Inoue, Mater. Trans. JIM, 41 (2000), pp. 1460-1462.
[15] W. Klement, R. H. Willens and P. Duwez: Nature, 187 (1960), p. 869.
[16] H. S. Chen, Mater. Sci. Eng., 25 (1976), p. 59.
[17] A. Inoue, T. Zhang and T. Masumoto, Mater. Trans. JIM, 30 (1989), pp. 965-972.
[18] A. Inoue, N. Nishiyama and H. M. Kimura, Mater. Trans. JIM, 38 (1997), pp. 179-183.
[19] Y. H. Kim, A. Inoue and T. Masumoto, Mater. Trans. JIM, 31 (1990), pp. 747-749.
[20] R. W. Cahn, P. Hassen and E. J. Kramer (ed.): Materials Science and Technology, Vol.9, New York, USA, 1991.
[21] H. S. Chen, Rep. Prog. Phys., (1980), p.353.
[22] H. W. Kui and D. Turnbull, Appl. Phys. Lett., 45 (1984), p. 615.
[23] A. Peker and W. L. Johnson, Appl. Phys. Lett., 63 (1993), p. 25.
[24] A. Inoue, N. Nishiyama, K. Amiya, T. Zhang and T. Masumoto, Mater. Lett., 19 (1994), p. 131.
[25] A. Inoue and T. Masumoto, Mater. Sci. Eng. A, 173 (1993), pp. 1-8.
[26] J. Q. Guo, K. Kita and K. Ohtera, Mater. Lett., 24 (1995), pp. 127-132.
[27] D. Turbbull and J. C. Fisher, J. Chem. Phys., 17 (1949), p. 71.
[28] Z. P.Lu, H. Tan, Y. Li and S. C. Ng, Scripta Mater., 42 (2000), pp. 667-673.
[29] A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, Acta Mater., 49 (2001), pp. 2645-2652.
[30] T. A. Waniuk, J. Schroers and W. L. Johnson, Appl. Phys. Lett., 78 (2001), p. 1213.
[31] S. V. Madge and A. L. Greer, Mater. Sci. Eng., A 375 (2004), p. 759.
[32] Z. P. Lu and C. T. Liu, Acta Mater., 50 (2002), p. 3501.
[33] A. Inoue, Mater. Trans. JIM, 36 (1995), pp. 866-875.
[34] A. Inoue, T. Zhang and A. Takeuchi, Mater. Sci. Forum., 269-272 (1998), p. 855.
[35] A. Inoue, A. Takeuchi and T. Zhang, Metall. Mater. Trans., A29 (1998), p. 1779.
[36] D. Turnbull, Contemp. Phys., 10 (1969), p. 473.
[37] C. H. Shek, Y. M. Wang and C. Dong, Mater. Sci. Eng., A 291 (2000), p. 78.
[38] S. Fang, X. Xiao, L. Xia, W. Li and Y. Dong, J. Non-Cryst. Solids, 321 (2003), p. 120.
[39] Y. Kawamura, T. Shibata, A. Inoue and T. Masumoto, Appl. Phys. Lett., 69 (1996), p. 1208.
[40] A. Inoue, Mater. Sci. Eng., A 267 (1999), p. 171.
[41] A. Inoue and T. Masumoto, J. Mater. Sci., 15 (1980), p. 1993.
[42] T. G. Park, S. Yi and D. H. Kim, Scripta Mater., 43 (2000), p. 1093.
[43] S. Pang, T. Zhang, K. Asami and A. Inoue, Mater. Trans., 42 (2001), p. 376.
[44] Y. Kawamura and Y. Ohno, Scripta Mater., 45 (2001), p. 127.
[45] H. E. Kissinger, Arial. Chem., 29 (1957), pp. 1702-1706.
[46] J. Vazquez, R. L. Lopez-Alemany, P. Villares and R. Jimenez-Garay, Thermochim. Acta Mater., 157 (2000), p. 181.
[47] T. Ozawa, Polymer, 12 (1971), pp. 150-158.
[48] K. Matusita and S. Sakka, Phys. Chem. Glasses, 20 (1979), pp. 81.
[49] M. Avrami, J. Chem. Phys., 7 (1939), pp. 1103-1112.
[50] M. Avrami, J. Chem. Phys., 8 (1940), pp. 212-224.
[51] M. Avrami, J. Chem. Phys., 7 (1941), pp. 177-184.
[52] J.W. Christian (Ed.), The Theory of Transformation in Metals and Alloys, Pergamon
Press, London, 1965.
[53] N. H. Pryds, M. Eldrup and A. S. Pedersen, Proceedings and 22nd Riso international symposium on materials science: Science of metastable and nanocrystalline alloys – Structure, properties and modeling, (2001), pp. 377-382.
[54] S. Linderoth, N. H. Pryds, M. Ohnuma, A. S. Pedersen, M. Eldrup, N. Nishiyama and A. Inoue, Mater. Sci. Eng. A, 304-306 (2001), p. 656-659.
[55] F. Sommer, G. Bucher and B. Predel, J. de Phys., 41 (1980), p. 563.
[56] S. Mahadevan, A. Giridhar and A. K. Singh, J. Non-cryst. Solids, 88 (1986), p. 11.
[57] C.C. Llin and P. Shen, J. Solid state Chem., 112 (1994), pp. 387-391.
[58] S. Orimo, K. Ikeda, H. Fujii, K. Yamamoto, J. Alloys Comp., 260 (1997), p. 143.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code