Responsive image
博碩士論文 etd-0719105-095054 詳細資訊
Title page for etd-0719105-095054
論文名稱
Title
聚亞醯胺薄膜自我組裝技術應用於3D微結構之研究
A Study of Polyimide Self-assembly Technology for Three-dimensional Micro Structure Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
55
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-15
繳交日期
Date of Submission
2005-07-19
關鍵字
Keywords
聚亞醯胺
Polyimide
統計
Statistics
本論文已被瀏覽 5662 次,被下載 0
The thesis/dissertation has been browsed 5662 times, has been downloaded 0 times.
中文摘要
運用積體電路平面製程技術所製作而成的元件只能以二維的方式呈現,因此在許多應用上將會受到限制。待微鉸鍊及自我組裝等面型微加工技術引進後,即可實現3D微結構與元件的夢想,雖然如此,但要應用在如微型風扇此類會產生大位移的元件,仍有進一步的問題極待解決。傳統的微風扇技術是利用錫鉛球的表面張力進行微型扇葉自我組裝,但以目前技術製造直徑100μm以下的錫鉛球,仍是相當困難,因此本論文致力於開發一種與IC微影製程相容的感光型聚亞醯胺來取代傳統錫鉛球以作微扇葉舉起的接點,如此一來可大幅縮減微型風扇的尺寸;另外,聚亞醯胺薄膜具有良好的抗有機溶液的特性,因此相當適用於濕式釋放法,如此便可達到降低成本、製程積體化及減少製程複雜度之目標。
透過本論文實驗所得製程最佳化的條件,目前已成功的將微扇葉舉起至45°,扇葉面積可達200μm×200μm,製程良率超過50%。經觀察發現,聚亞醯胺薄膜作為微結構接點之關鍵製程所在為回焊溫度的設定,超過405℃以上的回焊製程溫度將會造成薄膜收縮過劇以致無法成功立起扇葉。
Abstract
The device produced by IC planar process only shows in 2D, therefore, many applications may be limited. When adopted the micro hinge and self-assembly of surface micro machining technology, 3D micro structure is coming true. Even though , it’s hard to applied on micro fan this kind of producing continuous steps, further problem is waiting to solve. The traditional micro fan technology using surface tension power of the solder ball to carry out the purpose of self-assembly. Currently the diameter of solder ball smaller than 100μm is fairly difficult, using photosensitive polyimide to form a elastic joint replaces the solder ball, that slashes micro fan size. Therefore PI has very good property resisting organic solvent, hence it’s quiet suitable for using wet release, so that to achieve the purpose of cost down, process integrated and reducing the complex of process.
Through the experiment, the optimal recipe has been done. Micro blade has raising to 45°, blade area can reach 200μm×200μm, yield is over 50%. After observation, the key process is reflow temperature of polyimide thin film being micro structure joint, reflow temperature over 405℃ will result in thin film shrinking strongly, and that is unable to raise blade successfully.
目次 Table of Contents
中文摘要..................................................I
英文摘要.................................................II
誌謝....................................................III
目錄.....................................................IV
圖目錄....................................................V
表目錄..................................................VII
第一章 緒論........................................................1
1-1 前言.................................................1
1-2 文獻回顧.............................................6
1-3 研究目標與動機.......................................8
第二章 原理分析.........................................16
2-1 前言................................................16
2-2 表面張力自我組裝機制................................17
第三章 研究方法與實驗步驟...............................23
3-1 聚亞醯胺材料特性及製程參數淬取......................24
3-2-1 聚亞醯胺材料特性..................................24
3-2-2 旋轉塗佈曲線淬取..................................26
3-2-3 聚亞醯胺對各溶液抗蝕刻測試........................29
3-3 元件光罩設計........................................30
3-4 製程規畫與實驗結果..................................33
3-4-1 Coventor Ware模擬元件製程.........................33
3-4-2 製程內容說明......................................35
3-5 元件實驗結果........................................44
第四章 討論與建議.......................................49
參考文獻.................................................52
參考文獻 References
[1] 楊啟榮, “微機電系統技術與應用”, 2003, pp. 142.
[2] MCNC, The Multi-User MEMS Processes (MUMPs®),
http://www.mcnc.org/
[3] Sandia National Lab Process, http://www.sandia.gov/
[4] T. Ebefors, E. Kalvesten, and G. Stemme, “Three
dimensional silicon triple-hot wire anemometer based
on polyimide joints,” Proceeding of the IEEE
MEMS’98 Workshop, Heidelberg, Germany, January,
1998, pp. 93-98.
[5] J. Y. Lin, S. S. Lee, K. S. J. Pister, and M. C. Wu,
“Three-dimensional micro-Fresnel optical elements
fabricater by micromachining technique,” Electronics
Letters, 30, pp. 448-449, 1994.
[6] L. Fan, R. T. Chen, A. Nespola, and M. C. Wu, ”
Universal MEMS platforms for passive RF components:
suspended inductors and variable capacitors,”
Proceeding of the IEEE MEMS’98 Workhsop, Heidelberg,
Germany, January, 1998, pp. 29-33.
[7] L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu,”
Surface- micromachined micro-xyz stages for free-
space microoptical bench,” IEEE Photonics Technology
Letters, 9, no. 3, pp. 345-347, 1997.
[8] Richard R. A. Syms, Eric M. Yeatman, Victor M.
Bright, George M. Whitesides, ”Surface Tension-
Powered Self-Assembly of Microstructures—The State-
of–the-Art”, IEEE Journal of MicroElectroMechanical
Systems, Vol .12, No 4, August 2003, pp. 387-417.
[9] Lucent Technology, Bell Laboratories Physical Science
Research, http://www.bell-labs.com/org/
physicalsciences/projects/mems/mems3.html
[10] Ryan J. Linderman, Paul E. Kladitis, Victor M.
Bright, “Development micro rotary fan”, Sensor and
Actuator A, Vol 95, 2002, pp.135-142.
[11] Y. W. Yi and C. Liu, “Magnetic actuation of hinged
microstructure,” Journal of Microelectromechanical
Systems, 8, no.1, pp. 10-17,1999.
[12] J. W. Judy and R. S. Muller, “Magnetically
actuated, addressable microstructures,” Journal of
Microelectromechanical Systems, 6, no.3, pp.249-
256,1997.
[13] T. Akiyama, D. Collard, and H. Fujita, “Scratch
drive actuator with mechanical links for self-
assembly of three-dimensional MEMS,” Journal of
Microelectromechanical Systems, 6, no.1 pp.10-17,
1997.
[14] E. Quevy, L. Buchaillot, and Dominique Collard, “3D
self-assembling and actuation of electrostatic
microstructures, ”IEEE Transactions on electron
devices,” 48, no. 8, pp. 1833-1839, 2001.
[15] Y. C. Tai, L. S. Fan and R. S. Muller, “IC-
processed micro-motors: design, technology, and
testing,” Proceeding of the IEEE MEMS’89 Workshop,
Salt Lake City, UT, February, 1989, pp.1-6.
[16] E. J. Garcia, J. J. Sniegowski, “Surface
micromachined microengine,” Sens. Actuators, vol.
A48, pp 159-165,1995
[17] M. W. Judy, Y. H. Cho, R. T. Howe, A. P. Pisano,
“Self-adjusting microstructures(SAMS),” Proceeding
of the IEEE MEMS’91 Workshop, Nara, Japan, February,
1991, pp.51-56.
[18] R. T. Chen, H. Nguyen, M. C. Wu, “A high-speed low-
voltage stress-induced micromachined 2/sp1 times/2
optical switch,” IEEE Photonics Technology Letters,
11, no.11, pp.1396-1398, 1999.
[19] M. A. Helmbrecht, U. Srinivasan, C. Rembe, R. T.
Howe, and R. S. Muller, “Micromieeors for adaptive-
optics arrays,” The 11th International Conference on
Solid-State Sensors and Actuators (Transducers ‘01),
Munich, Germany, June, 2001, pp.1290-1293.
[20] D. C. Miller, W. Zhang, and V. M. Bright,
“Microrelay Packaging Technology Using Filp-chip
Assembly”, Proceeding of the IEEE MEMS’00 Workshop,
Miyazaki, January, 2000, pp. 265-270.
[21] V. Kaajakari, and A. Lal, ”Pulsed ultrasonic
release and assembly of micromachines,” The 10th
International Conference on Solid-State Sensors and
Actuators (Transducers’99), Sendai, Japan, June,
1999, pp.212-215.
[22] V. Kaajakari, and A. Lal, “Thermo-kinetic actuation
for hinged structure batch microassembly,”
Proceeding of the IEEE MEMS’00 Workshop, Las Vegas,
NV, January, 2002, pp.196-199.
[23] P. E. Kladitis, K. F. Harsh, V. M. Bright, and Y. C.
Lee, “Three-dimensional modeling of solder shape for
the design of solder self-assembled micro-electro-
mechanical systems,” Proceeding of the IEEE MEMS’00
Workshop, Nashville, Tennessee, November, 1999, pp.11-
18
[24] R. R. A. Syms, C. Gormley, and S. Blackstone,
“Improving yield, accuracy and complexity in surface
tension self-assembled MOEMS,” Sensors and Actuators
A, 2839, pp.1-11, 2000
[25] R. R. A. Syms, “Self-assembled 3-D silicon
microscanners with self-assembled electrostatic
drives,” IEEE Photonics Technology Letters, 12,
no.11, pp.1519-1521, 2000.
[26] U. Srinivasan, D. Liepmann, and R. T. Howe,
“Microstructure to substrate self-assembly using
capillary forces,” Journal of Microelectromechanical
Systems, 10, no.1 pp.17-24, 2001.
[27] K. S. Pister, M. W. Judy, S. R. Burgett, and R. S.
Fearing, “Microfabricated hinges,” Sensors and
Actuators A, 33, pp.249-256, 1992
[28] Tai-Ran Hsu, “MEMS & Microsystems Design and
Manufacture,” ch 9, pp.321-323, 2002
[29] Richard R. A. Syms, ”Equilibrium of Hinged and
Hingless Structures Rotated Using Surface Tension
Force”, IEEE Journal of MicroElectroMechanical
Systems, Vol. 4, No. 4, December 1995, pp. 177-184.
[30] Kevin F. Harsh, Victor M. Bright, Y. C. Lee, ”
Solder Self-assembly for Three-dimensional
Microelectromechanical Systems”, Sensor and
Actuator, Vo. 77, 1999, pp. 237-244.
[31] Dupont, “HD 4012 thick formable Polyimide Coating”
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 35.175.201.245
論文開放下載的時間是 校外不公開

Your IP address is 35.175.201.245
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code